
Joint Affinity Propagation for Multiple View Segmentation

Jianxiong Xiao Jingdong Wang Ping Tan Long Quan

The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

{csxjx, welleast, ptan, quan}@cse.ust.hk

Abstract

A joint segmentation is a simultaneous segmentation of

registered 2D images and 3D points reconstructed from the

multiple view images. It is fundamental in structuring the

data for subsequent modeling applications. In this paper,

we treat this joint segmentation as a weighted graph label-

ing problem. First, we construct a 3D graph for the joint

3D and 2D points using a joint similarity measure. Then,

we propose a hierarchical sparse affinity propagation algo-

rithm to automatically and jointly segment 2D images and

group 3D points. Third, a semi-supervised affinity prop-

agation algorithm is proposed to refine the automatic re-

sults with the user assistance. Finally, intensive experiments

demonstrate the effectiveness of the proposed approaches.

1. Introduction

Structure from motion takes an image sequence of a rigid

(or static) object as the input and recovers the camera poses

and a cloud of 3D points. After many years of continuous

research, nowadays, the structure from motion algorithm,

such as [6], can robustly and accurately recover hundreds

of thousands of points and all the camera poses.

The reconstructed 3D points, however, are unstructured

in space, therefore are not yet sufficient for creating a geo-

metric model of the underlying objects. To structure the

available 3D points and registered 2D images, recent re-

searches [10, 11] show that a joint segmentation of the re-

constructed 3D points and the multiple 2D images is fun-

damental for the subsequent modeling applications. Obvi-

ously, the concept of object is subjective, and learning from

the user assisted 2D image segmentation gives the object

segmentation more useful information. Hence, we wish to

segment 3D points and 2D images into groups, where each

group represents a distinct object. This segmentation can be

regarded as a post-processing step of structure from motion,

which provides semantic organizations of the recovered 3D

points. And this is very useful for the subsequent 3D mod-

eling of the scene.

1.1. Related work

The segmentation can be performed individually on the

3D points or 2D images. The 3D points, without consid-

ering the 2D images, is a little like the range data. The

segmentation is usually based on local geometric character-

izations, which is insufficient to obtain semantic segmen-

tation. On the other hand, segmenting 2D natural images

is a well-studied topic, and many successful methods, such

as [13, 15], were proposed. It is a choice to individually

segment each image of the multiple view sequence. For

example, a pure 2D segmentation approach to reconstruct

small-leaf trees is proposed in [14]. However, it definitely

misses very rich 3D information or 2D correspondence in-

formation, and hence can not obtain satisfactory results on

large objects with more complex color, texture and shape

information.

Some methods were proposed to utilize the motion infor-

mation for multiple image segmentation. The layered ap-

proaches originated from [16] usually do not directly adopt

3D reconstruction information. In [17, 18], motion esti-

mation and segmentation on the extracted correspondences

between frames are performed, then layer assignment (i.e.

pixel label) is obtained through propagating the labels of

the corresponding pixels. In [9], the joint inference of mo-

tion estimation and labeling is solved using the Expectation

Maximization algorithm.

The modern stereo matching framework, such as [5], is

very similar to the layered approach, and it in essence dis-

cretizes the 3D space into a few layers. Bilayer segmen-

tation of binocular stereo video in [4], a simplest layered

representation, probabilistically fused the stereo cues and

learned appearance model to separate the figure from the

background.

1.2. Our approach

In this paper, we explore for multiple view segmenta-

tion by jointly utilizing and grouping the 2D and 3D data.

The availability of both 2D and 3D data can bring comple-

mentary information for segmentation. For instance, some

 Proceedings of 11th IEEE International Conference on Computer Vision (ICCV2007)

objects are obviously separable in 3D whereas others are

clearly cut out by image boundary information even if they

are closely connected in space.

In this paper, we follow the joint segmentation frame-

work proposed in [11] for the multiple view segmentation.

The main contributions of this paper include the similarity

based on the joint 2D and 3D information, and the two clus-

tering algorithms: hierarchical sparse affinity propagation

and semi-supervised graph-based affinity propagation.

The rest of this paper is organized as follows. The pre-

liminary processes are presented in Sec. 2. And in Sec. 3

we formulate the joint segmentation problem. Sec. 4 in-

troduces the interactive strategy learning from the user as-

sistance. And the novel optimization method is proposed

in Sec. 5. The experimental results are presented in Sec. 6,

Finally, Sec. 7 concludes this paper.

2. Preliminary Processes

We capture multiple view images from a number of dif-

ferent overlapping views around an object using a hand-held

camera. We use the approach described in [6] to compute

the camera poses and a quasi-dense cloud of reliable 3D

points in space.

Each reconstructed 3D point corresponds to several 2D

points in different views. To utilize the texture informa-

tion, we may also associate patches with each 3D point.

We perform the competitive region growing algorithm on

each image by taking projected 2D points as the seeds. In

this way, each 3D point is associated with image patches in

some views.

An observation is that although structure from motion

(SFM), the quasi-dense approach in our case, can recover

the 2D correspondences and the corresponding 3D posi-

tion, inaccuracy is unavoidable. Furthermore, SFM, which

is based on interest point matching, generate points partially

on the object boundary. In our case, the quasi-dense points

are obtained by propagating the points of interest. Conse-

quently, a small error around the object boundary may result

in a large color difference. We have to use some techniques

to enhance the robustness of the 2D projection estimation.

Hence, we need to process the set of patches to reduce the

error induced by the 2D projection inaccuracy. Here, we

propose a robust patch filtering process to remove some out-

lier patches. The algorithm is shown in Alg. 1.

3. Formulation

Let I = {Ii} be the set of n images with i = 1, . . . , n.

Each image Ii is represented by a set of regions, i.e. Ii =
{(uk, Pk)} with k up to the number set by the visible pro-

jections of the quasi-dense points in this view, and uk is

the projection coordinate in 2D image space and Pk is

the corresponding patch. It is assumed that all the im-

Algorithm 1 Robust patch filtering

1. Compute the mean color ci for the patch in i-th image.

2. Compute the similarity between the patch pairs by

sij = −‖ci − cj‖
2
.

3. Perform affinity propagation [1] to cluster this mean

color set {ci} to obtain exemplars.

4. Keep the cluster corresponding to the exemplar that

has the largest number of supporting patches as the

representative patch vectors, and denoted as {Pi}.

ages are fully calibrated with respect to a common co-

ordinate frame. We define a joint point x to be a vec-

tor composed of the 3D coordinates (x, y, z) of a point in

space and all its corresponding patches Pi in all images, i.e.

x = ((x, y, z), (u1, P1), · · · , (un, Pn)), where each pro-

jection satisfies ui = Pi(x, y, z, 1)T for the projection ma-

trix Pi of the i-th camera. The correspondence information

is encoded in the joint point representation. And each joint

point x is associated with an n-dimensional visibility vec-

tor v with binary values to indicate that ui is visible in the

i-th image if the i-th component is 1, and invisible other-

wise. A segmentation is a set of labels L = {lk}, and each

of them lk assigns a set of joint points to a common group.

Here X = {xj} is the given set of joint points, V = {vj}
is the given set of visibilities, and X and V are given by

the quasi-dense reconstruction in our case. We now want to

get the inference of L, given X , V and I . Similar to [11],

we define a weighted graph G = (V, E) with joint points as

nodes, in which edge weights denote a local similarity mea-

sure between the two joint points in the graph G. Different

from [11], we generalize the joint point from a pixel level to

a region (superpixel) level to help the definition of the joint

similarities.

3.1. Graph construction

The set of edges E is constructed using the k-Nearest

Neighbor (k-NN) technique. To guarantee that the joint

points i and j, (i, j) ∈ E, must be both visible at least in

one view, each view is associated with a set of joint points

that are visible in this view. We then build for each view a

k-NN network on the corresponding set of joint points ac-

cording to the 3D Euclidean distance. Finally, we combine

those networks together to reach a graph on the entire joint

points.

3.2. Joint similarity

The joint use of 3D and 2D information for better seg-

mentation, since all our images and 3D data are perfectly

registered, is discovered by [10, 11]. All these useful infor-

mation is encoded in the weights on the edge. For similar

nodes, similar labels should be selected for them. There-

fore, a similarity is defined on each edge to characterize

the smoothness of the labels. The quality of a segmentation

fundamentally depends on the similarity, and hence we seek

to define it jointly from both 3D and 2D features.

3D similarity The points that are closer in space tend to

have a higher probability belonging to the same group, i.e.

the distance between the points of the same group is smaller

than that of the points in different groups. We naturally

take this spatial distance as a similarity measure s3d(i, j) =

−
||pi−pj ||

2

2σ2

3d

, where σ2
3d is the expectation E(||pi − pj ||

2)

and p = [x y z]T . In addition to the 3D Euclidean distance,

the normal directions are also important for shape smooth-

ness. We incorporate the difference between normal direc-

tions into the similarity and define s3n(i, j) = −
||ni−nj ||

2

2σ2

3n

,

where nj is the normal direction vector of point j, approx-

imately estimated from its neighbor points, and σ2
3n is the

expectation E(||ni−nj ||
2). The final 3D similarity is given

by s3(i, j) = s3d(i, j) + s3n(i, j).

2D color similarity Since a joint point x is associ-

ated with the image colors, we can define a similar-

ity function encoding the color differences as sc(i, j) =

−
||E(ci)−E(cj)||

2

2σ2
c

, where σ2
c = E(||E(ci)−E(cj)||

2), and

E(c) = 1
|v|1

∑n

i=1 ci. This color consistency between joint

points is intuitively estimated using their average colors,

since different points may have different numbers of visi-

ble color features. Averaging the colors leads to a more sta-

ble solution. However, this similarity function only makes

sense between the objects with apparent different colors.

In case of apparent similar colors, image contour fea-

tures, similar to [8], should be incorporated into the similar-

ity. It is assumed at present that each pixel u in view Iv is

associated with a response gv(u) to show the degree of the

pixel lying on a contour point. The endpoints of the edge

(i, j) must both be visible at least in one view, meaning that

the line segment [i, j] must correspond to a line segment vis-

ible in the same view. We can use the following similarity

measurement

sic(i, j) = −
medv{maxtv∈[i,j]v gv(tv)}

2σ2
ic

,

where the inner term maxtv∈[i,j]v gv(tv) finds the maxi-

mum contour response along the projected line segment

[i, j]v in view v, the outer term medv{·} tries to seek the

median contour response in all possible views, and σic is

the variance of the median contour responses of all line

segments. The response gv(u) is calculated from an edge

(a) Strokes (b) Trimap (c) 3D projection

Figure 1. User assistance. (a) shows the strokes scribbled by the

user. (b) shows the segmentation result in a trimap representation

by our semi-supervised AP method. In (c), the 3D projections

inside and outside the white-bounded region are assigned different

hard labels, and are used to propagate the labels into the other joint

points invisible in this view using our semi-supervised AP method.

map obtained by the similar orientation filter bank used

in [8, 11].

Patch histogram similarity To ultilize texture similarity,

we express each patch vector in term of multi-resolution

histograms [2]. That is, for each joint point, we collect all

its patches {P1, . . . , Pk} remained after filtering, then build

an average color histogram h0. Without losing the spa-

tial information, we further downsample the patches t − 1
times and compute several normalized color histograms

h1, . . . , ht−1. Hence, a joint point now corresponds to a

vector of histograms h = [h0, h1, . . . , ht−1].
In this way, for any two joint points i and j, with the

histogram representations hi and hj , their patch similarity
is defined as

st(i, j) = −d(hi
, h

j) = −
1

t

Xt−1

k=0

d(hi
k, h

j
k),

where d (·, ·) is the dissimilarity measures for histograms.

Here, we choose the Kullback-Leibler divergence.

Finally, we are able to perform a simple addition of the

similarities to define the joint similarity to be

s(i, j) = s3(i, j) + sc(i, j) + sic(i, j) + st(i, j).

4. Learning

The concept of segmentation is obviously subjective.

Hence, some user assistant information will greatly improve

the segmentation. In recent years, interactive 2D image

matting [7] are very successful, and a semantic segmenta-

tion was induced from a training example in [12]. Here,

we use a similar way to allow the user conceptually group

different objects in some 2D images. To specify an object,

the user marks a few lines on the images by dragging the

mouse cursor while pushing down a button. An example

of our user-interface is shown in Fig. 1(a), where different

objects are marked by strokes with different colors.

We can segment 2D images using the semi-supervised

contraction method, which will be discussed in Subsec. 5.3.

(a) Connected components (b) Level 1 (c) Level 5 (d) Level 17

Figure 2. Demonstration of hierarchical sparse affinity propagation. (a) shows the connected components on the initial k-NN graph. (b)

shows the first-level result of hierarchical sparse affinity propagation. (c) shows the fifth-level result. (d) shows the final result.

We want to make use of these strokes and segmentation in-

formation to help segment the other views. This is more

practical since we always have about 30 views and the user

may not want to draw strokes on every view. Here, we make

the assumption that all the surfaces in the scene are Lam-

bertian. Under this assumption, the appearance models of

all objects are roughly the same in all views. Hence, for the

joint points with visible projections on this segmented 2D

image, we directly set their labels the same as their pro-

jection’s labels respectively, which can be obtained from

segmented images. To handle the ambiguity of the projec-

tions near the boundary, such as the projections in the white

area in Fig. 1(c), we regard the joint points corresponding

to them as unlabeled joint points.

5. Optimization

Affinity propagation [1] (AP) is a recently-developed

clustering algorithm, which clusters data points based on

the similarities. It aims to find several exemplars such that

the sum of the similarities between the data points and the

corresponding exemplars is maximized. In this section, we

propose two variants of the original algorithm to jointly seg-

ment the joint points. 1) A hierarchical sparse affinity prop-

agation is proposed for automatic clustering. 2) A semi-

supervised graph-based affinity propagation is proposed to

refine the clustering result interactively.

5.1. Affinity propagation

In this subsection, we review the affinity propagation al-

gorithm described in [1]. There are two kinds of messages

communicated between data points, i.e. responsibility and

availability, and each takes a different kind of competition

into account.

To begin with, the availabilities are initialized to zero:

a(i, k) = 0. The responsibility r (i, k), sent from data point

i to candidate exemplar point k, reflects the accumulated

evidence for how well-suited point k is to serve as the ex-

emplar for point i, taking into account other potential exem-

plars for point i. The responsibilities are computed as

r(i, k)← s(i, k)−maxk′ 6=k{a(i, k′) + s(i, k′)}.

For k = i, the self-responsibility r(k, k) reflects accumu-

lated evidence that point k is an exemplar, based on its input

preference tempered by how ill-suited it is to be assigned to

another exemplar.
The availability a (i, k), sent from the candidate exem-

plar point k to point i, reflects the accumulated evidence
for how appropriate it would be for point i to choose point
k as its exemplar, taking into account the support from
other points that point k should be an exemplar. Whereas
the above responsibility update lets all candidate exem-
plars compete for ownership of a data point, the following
availability update gathers evidence from data points as to
whether each candidate exemplar would make a good ex-
emplar:

a(i, k)← min{0, r(k, k) +
X

i′ /∈{i,k}
max{0, r(i′, k)}}.

The self-availability a(k, k) is updated differently:

a(k, k)←
X

i′ 6=k
max{0, r(i′, k)}.

This message reflects accumulated evidence that point k is

an exemplar, based on the positive responsibilities sent to

candidate exemplar k from other points.

After the convergence, availabilities and responsibilities

are combined to identify exemplars. For point i, its corre-

sponding exemplar is obtained as

k∗ = arg maxk{a(i, k) + r(i, k)}. (1)

This means to either identify point i as an exemplar if k∗ =
i, or identify data point k∗ that is the exemplar for point i.

5.2. Hierarchical sparse affinity propagation

Affinity propagation on a sparse graph, called sparse

affinity propagation, is more efficient as pointed in [1]. The

implementation is similar to the description in Subsec. 5.1

except that the responsibilities and availabilities are only

updated on the connected edges. Then sparse affinity prop-

agation runs in O(T |E|) time with T the number of the iter-

ations and |E| the number of the edges. In our sparse graph,

the time complexity is O(Tn) since |E| = O(n).
We observed, however, according to the original sparse

implementation in [1], the number of the data points that

np nq

ni nl

nk

s(i, p)

np1

np2

np3

nq2

nq1

nj

Figure 3. Illustration of semi-supervised contraction. np and nq

are candidate exemplars. The data points, ni, nj , nl, nk, are inter-

nally connected if they are neighbors, and are directly connected

with the two candidate exemplars. np or nq attracts competitively

the data points in the semi-supervised AP algorithm.

have the same exemplar i is at most degree(i), where

degree(i) is the number of nodes connecting i. This is be-

cause point i, the exemplar for point j, must directly con-

nect point j according to Eqn. 1 and the number of the

points that connect point i is degree(i). This will result

in unexpectedly too many fragments as shown Fig. 2(b).

To handle this problem, we propose a hierarchical sparse

affinity propagation method. After obtaining the exemplars

on the original sparse graph, we run again sparse affin-

ity propagation on the exemplars by constructing a sparse

graph on the exemplars and connecting the exemplars ci

and cj if the point with its exemplar ci is connected with

at least one point whose exemplar is cj . Then we can re-

run sparse affinity propagation on the new exemplars until

obtaining satisfactory results. Compared with the spectral

clustering approach in [11], the hierarchical sparse affinity

propagation is more efficient, running in O(TLn) with T
the number of the iterations and L the number of the hierar-

chies, and more effective. One example is shown in Fig. 2.

5.3. Semi-supervised contraction

The original affinity propagation is an unsupervised clus-

tering method. To utilize the partially labeled nodes, an

efficient and effective semi-supervised affinity propagation

method is proposed.

First, we group the nodes np1, np2, · · · that have the

same known label, and contract these nodes into a single

new node np. Similarly, nq1, nq2, · · · are contracted into

a single node nq . A toy example is shown in Fig. 3. And

we set the preferences of the contracted nodes to zero, i.e.

s (p, p) = s (q, q) = 0 (this is equivalent that the exponen-

tial similarity is 1.).

Then, we update the new edges Ē based on the origi-

nal edges E and consider the similarities between all the

remaining nodes ni /∈ np ∪ nq and the contracted nodes

np, nq . We connect ni /∈ np∪nq and np, nq , and cut all the

edges between the nodes in np, nq . We set the similarities

on the connected edges Ē as follows.

1. For the similarity on (ni, nj) ∈ Ē if ni /∈ np ∪ nq,

nj /∈ np ∪ nq and (ni, nj) ∈ E , we just copy the

similarity from the original weighted graph.

2. Considering the similarity on (ni, nt) ∈ Ē if pt ∈
nt and at least one pt such that (ni, pt) ∈ E ,

nt ∈ {np, nq}, we set it as the largest similarity be-

tween node nt and any node pt ∈ nt as s(i, t) =
maxpt∈nt

s(i, pt).

3. For edge (ni, nt) ∈ Ē if there is no point pt ∈ nt such

that (ni, pt) ∈ E), we use the distance of the short-

est path between ni and nt to estimate their similarity

s(i, t) = maxpathi,t

∑
(j,k)∈pathi,t

s(j, k).

Finally, when the algorithm converged, availabilities and

responsibilities are combined to identify exemplars. For

point i, its corresponding label is obtained as

k∗ = arg maxk∈{p,q}{a(i, k) + r(i, k)}. (2)

Here, we perform the exemplar assignment only from the

labeled point set to obtain semi-supervised contraction,

which is slightly different from Eqn. 1. One demonstration

is shown in Fig. 4. Note that the algorithm can be easily

generalized to more than two exemplars.

The semi-supervised affinity propagation propagates the

message on the sparse graph by setting only the labeled

nodes as candidate exemplars. It can converge in O(Tn)
time. Related discrete algorithms, such as iterated condi-

tional mode, graph cuts, belief propagation, tree-reweighted

message passing can also solve this problem [3] in more

time compleixty, and other relaxation algorithms, such as

label propagation [19], may not obtain good performance.

6. Experiment Results

Before performing our approach, we first run the con-

nected component algorithm to extract connected compo-

nents. One example is shown in Fig. 2(a). In addition, be-

fore patch filtering, we run the bilateral filtering method to

smooth all 2D images while keeping the edges.

In Fig. 5, we first draw four strokes in one view shown

in Fig. 5(a) to indicate that the scene consists of four ma-

jor components: the tree, the desk, the ground and the wall.

Then we learn the appearance models for each of the four

components, respectively, and run the semi-supervised con-

traction on the 2D images to obtain 2D coarse segmentation

and 3D segmentation as shown in Fig. 5(b) by checking

their projections. Thirdly, we run our hierarchical sparse

affinity propagation and semi-supervised affinity propaga-

tion to obtain the grouping results on each component, and

the final 3D segmentation and 2D segmentation results are

(a) Selected group (b) 2D projections (c) Projection segmentation (d) 3D segmentation

Figure 4. Demonstration of semi-supervised contraction. (a) shows the selected cluster to be split. (b) shows the 2D projections visible on

one view. (c) shows the separation of the visible 2D projections assisted by the user. (d) shows the clustering result on the selected group.

shown in Figs. 5(c) and 5(d) respectively. And in Fig. 6

shows another example using the similar process. In all

our experiments, without code optimization, the hierarchi-

cal sparse affinity propagation takes one to three minutes at

lower levels and becomes real-time at higher levels, while

the semi-supervised affinity propagation always provides

results on the fly, which is suitable for user interaction.

As an application mentioned above, 3D modeling can

benefit from satisfactory multiple view segmentation. A

modeling example is shown in Fig. 7. After we perform

the proposed approach to obtain both 3D and 2D segmen-

tation as shown in Figs. 7(a) and 7(c), we can build the 3D

surface and appearance models using the similar technique

in [10]. The rendering result is shown in Fig. 7(d).

7. Conclusion

Given both 2D images and 3D points reconstructed

from those images, we proposed a joint segmentation ap-

proach to simultaneously segment 2D images and clus-

ter 3D points. Efficient and effective hierarchical sparse

and semi-supervised affinity propagation algorithms make

the joint segmentation more practical. The results have

demonstrated the powerfulness. Future work includes fur-

ther study of the affects of different affinities.

Acknowledgements

The work is supported by Hong Kong RGC projects

619005, 619006 and 619107, and NSFC/RGC Joint Grant

N-HKUST602/05.

References

[1] B. J. Frey and D. Dueck. Clustering by Passing Messages

Between Data Points. Science, 315:972–976, February 2007.

[2] E. Hadjidemetriou, M. Grossberg, and S. Nayar. Multireso-

lution Histograms and Their Use for Texture Classification.

In 3rd International Workshop on Texture Analysis and Syn-

thesis, Oct 2003.

[3] V. Kolmogorov. Convergent Tree-Reweighted Message

Passing for Energy Minimization. In AISTATS, 2005.

[4] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and

C. Rother. Bi-Layer Segmentation of Binocular Stereo

Video. In CVPR (2), pages 407–414, 2005.

[5] V. Kolmogorov and R. Zabih. What Energy Functions Can

Be Minimized via Graph Cuts? In ECCV (3), pages 65–81,

2002.

[6] M. Lhuillier and L. Quan. A Quasi-Dense Approach to Sur-

face Reconstruction from Uncalibrated Images. IEEE Trans.

Pattern Anal. Mach. Intell., 27(3):418–433, 2005.

[7] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy Snapping.

In Proceedings of ACM SIGGRAPH, pages 303–308, 2004.

[8] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and Tex-

ture Analysis for Image Segmentation. International Journal

of Computer Vision, 43(1):7–27, 2001.

[9] I. Patras, E. Hendriks, and R. Lagendijk. Video Segmenta-

tion by MAP Labeling of Watershed Segments. IEEE Trans.

Pattern Anal. Mach. Intell., 23(3):326–332, 2001.

[10] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B.

Kang. Image-based Plant Modeling. ACM Trans. Graph.,

25(3):599–604, 2006.

[11] L. Quan, J. Wang, P. Tan, and L. Yuan. Image-based Mod-

eling by Joint Segmentation. International Journal of Com-

puter Vision, To Appear, 2007.

[12] Y. Schnitman, Y. Caspi, D. Cohen-Or, and D. Lischinski. In-

ducing Semantic Segmentation from an Example. In ACCV

(2), pages 373–384, 2006.

[13] J. Shi and J. Malik. Normalized Cuts and Image Segmen-

tation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–

905, 2000.

[14] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-

based Tree Modeling. ACM Trans. Graph., 2007.

[15] Z. Tu and S. C. Zhu. Image Segmentation by Data-Driven

Markov Chain Monte Carlo. IEEE Trans. Pattern Anal.

Mach. Intell., 24(5):657–673, 2002.

[16] J. Wang and E. Adelson. Representing Moving Images with

Layers. IEEE Transactions on Image Processing, 3(5):625–

638, 1994.

[17] J. Wills, S. Agarwal, and S. Belongie. What Went Where. In

CVPR (1), pages 37–44, 2003.

[18] J. Xiao and M. Shah. Motion Layer Extraction in the Pres-

ence of Occlusion Using Graph Cut. In CVPR (2), pages

972–979, 2004.

[19] X. Zhu and Z. Ghahramani. Learning from Labeled and Un-

labeled Data with Label Propagation. Technical Report tech

report CMU-CALD-02-107, 2002.

(a) Strokes (b) 3D coarse segmentation (c) Final 3D segmentation (d) Final 2D segmentation

Figure 5. Segmentation results for the office scene. (a) shows the user assistance in one view to indicate the four components of the scene,

and the 3D segmentation result is shown in (b) by utilizing the user assistance and our semi-supervised contraction algorithm. (c) shows

the final 3D segmentation result using our hierarchical sparse and semi-supervised affinity propagation. (d) shows the corresponding 2D

segmentation result.

(a) Coarse 3D segmentation (b) Final 3D segmentation (c) Final 2D segmentation

Figure 6. Segmentation results for the terra-cotta warriors scene. (a) shows the initial result using user assistance. (b) shows the final 3D

segmentation result using our hierarchical sparse and semi-supervised affinity propagation. (c) shows the corresponding 2D segmentation

result.

(a) 3D groups (b) Group projection (c) 2D leaves segmentation (d) Rendering result

Figure 7. Segmentation results for the Nephthytis scene. To be clear, this example only shows the segmentation results on the leaves. (a)

shows the grouping result on 3D space, (b) shows the projections of the groups, (c) shows the image segmentation result, and in addition

(d) shows the 3D modeling example by using the techniques in [10] based on our multiple view segmentation result.

