
ACM Reference Format
Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5,
Article 108 (December 2008), 7 pages. DOI = 10.1145/1409060.1409061
http://doi.acm.org/10.1145/1409060.1409061.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2008 ACM 0730-0301/2008/05-ART108 $5.00 DOI 10.1145/1409060.1409061
http://doi.acm.org/10.1145/1409060.1409061

Single Image Tree Modeling

Ping Tan1 Tian Fang Jianxiong Xiao Peng Zhao Long Quan

1National University of Singapore Hong Kong University of Science and Technology

(a) (b) (c) (d)
Figure 1: Single image tree modeling. (a) Single input image of a tree downloaded from www.flickr.com. (b) Strokes drawn by the user, only
two strokes for this example. (c) The automatic synthesis of the tree branches. (d) The complete tree model rendered at the same viewpoint
as the input image.

Abstract

In this paper, we introduce a simple sketching method to generate a
realistic 3D tree model from a single image. The user draws at least
two strokes in the tree image: the first crown stroke around the tree
crown to mark up the leaf region, the second branch stroke from
the tree root to mark up the main trunk, and possibly few other
branch strokes for refinement. The method automatically gener-
ates a 3D tree model including branches and leaves. Branches are
synthesized by a growth engine from a small library of elemen-
tary subtrees that are pre-defined or built on the fly from the recov-
ered visible branches. The visible branches are automatically traced
from the drawn branch strokes according to image statistics on the
strokes. Leaves are generated from the region bounded by the first
crown stroke to complete the tree. We demonstrate our method on
a variety of examples.

1 Introduction
Trees are ubiquitous and hard to model in a realistic way because
of the large varieties and their natural complexity in geometry.
Progress has been made over the years in modeling trees. Many
methods [Weber and Penn 1995; Prusinkiewicz et al. 2001; Reche-
Martinez et al. 2004; Quan et al. 2006; Tan et al. 2007; Neubert
et al. 2007] can achieve highly realistic tree models. Yet all these
methods need significant amount of efforts to produce good results,
either in the sense of tuning tree growing parameters or in the sense
of image processing and 3D reconstruction.

To overcome the current difficulties, we propose a method that
drastically simplifies the modeling process. We use a single im-
age to model a tree. From this single image and few user drawn

strokes, our system first generates the whole tree branching struc-
ture by non-parametric synthesis, then complete tree model with
leaves. Our system is remarkably simple and generates visually
convincing results. It makes the modeling of large scale vegeta-
tion affordable. It could be part of a cost-effective solution to build
realistic-looking environments for movie post-production, architec-
tural designs, games, and web applications.

1.1 Related work

The growth of trees adheres to strong botanic rules and patterns.
Many previous methods are rule based. [Prusinkiewicz et al. 1994]
introduced a series of methods based on the idea of the generative
L-system. [Weber and Penn 1995] used geometric rules to produce
realistic-looking trees. [de Reffye et al. 1988] designed rules ac-
cording to botanical knowledge. These techniques generate good
results, but they often require expertise for effective use. The idea
behind rule based methods is that the branch and leaf arrangement
follow a pattern which can be predicted with a set of rules and pa-
rameters. However, these rules and parameters are nontrivial to set.

In the past several years, image based methods become popular.
These methods use images to recover 3D structure of the tree.
[Reche-Martinez et al. 2004] recovered the opacity and color of
each cell of a volume containing the tree. Although realistic re-
sults can be produced by this method, its volumetric representation
makes editing and animation almost impossible. [Shlyakhter et al.
2001] reconstructed a visual hull according to image silhouette and
fit a branch structure to the hull. [Neubert et al. 2007] used parti-
cle flow to extract branch structure from the recovered tree volume.
Instead of relying on approximate geometry information such as
visual hull, [Quan et al. 2006] and [Tan et al. 2007] used struc-
ture from motion algorithm to compute a set of 3D points over the
tree. Then 3D points were used to generate triangle mesh model
of branches and leaves. All these image based methods need mul-
tiple images as input. Typically, these images should span a large
range of view angles to correctly recover 3D information. Further-
more, the tree should be first segmented out from background in
all images. Although there are some well developed tools [Li et al.
2004; Rother et al. 2004], such a segmentation of multiple images
is tedious and time consuming .

Instead of relying on rules or images, tree models can also be gen-
erated according to 3D scanner data or 2D user sketches. [Xu et al.
2007] produced very good tree models from a set of 3D points cap-

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

tured by scanner. [Okabe et al. 2005] generated tree models from
a branch skeleton sketched by user. However, this kind of sketch-
ing method requires many user interventions and it is often hard to
sketch a realistic tree for an amateur user.

1.2 Our approach

Given a single image of a tree, we draw strokes on the image to
create a tree model. We start to draw a crown stroke to mark up
the leaf region in the image. Then a branch stroke is drawn from
the tree root to mark the main trunk. Branches visible in the image
are automatically traced out around drawn branch strokes to mini-
mize the user intervention and achieve the highest realism. A few
other branch strokes could be added to complete visible branches
when necessary. The branch structure patterns encoded in visible
branches are used to build up a small library of elementary sub-
trees to grow the entire tree. If too few visible branches exist in
the image, the tree could also grow according to some predefined
subtree patterns. Branches work as a hidden determinant structure
of the tree. Once branches are ready, leaves can be generated eas-
ily according to the branch structure and image information. One
example can be seen in Figure 1. The input single image is shown
in (a), with two strokes drawn by the user as (b). Our method first
grows a branch structure illustrated in (c) then complete the tree
with leaves as in (d).

Our method can be regarded as a mixture of rule based method,
image based method and sketch based method. Rather than ap-
plying parametric rules for branch generation, we use the local
branch shapes to synthesize new branches. This is essentially a non-
parametric tree growing system. Different from previous image-
based methods, we design our system to work with a single input
image. We do not intend to recover 3D structure directly from im-
age. In contrast, we use the image as a guide for non-parametric
tree growing, i.e. the growth should lead to a result close to the im-
age. Different from a pure sketching [Okabe et al. 2005], we only
draw a few strokes. The image statistics underlined by the strokes
allows us to recover more tree structures.

2 Image Plane Sketching
Previous image-based methods [Tan et al. 2007; Reche-Martinez
et al. 2004; Neubert et al. 2007] need a tree segmentation to make
use of image information for modeling. However, a good tree seg-
mentation is usually very difficult. Our method does not depend
on high quality segmentation. In our system, the user draws a few
strokes to mark out foliage and visible branches by taking advan-
tage of the tree prior to facilitate segmentation.

User interface The user draw strokes on the image by moving the
mouse cursor and holding a button. (Left button for the crown and
right button for branches.) Similar UI is designed in [Li et al. 2004]
for image segmentation. For simplicity, we always use one stroke
to mark the crown. The foliage region is automatically extracted
by the method described in the following paragraph according to
this stroke. The user then draw strokes to mark out branches. Af-
ter each branch stroke, a tracing algorithm is trigged to follow the
visible branches close to the stroke. The traced visible branches are
displayed over the image. If not satisfied with this result, the user
has the option of adding or deleting strokes for correction. Unlike a
pure sketching system [Okabe et al. 2005], we have the image infor-
mation underlying the drawn strokes that allows extremely simple
sketching.

Figure 1 shows an example in which we need only two strokes: the
first crown stroke in red and the second branch stroke in blue.

Figure 2: The extracted foliage region via minimizing the Gibbs
energy. These are the results for the cherry tree in Figure 1 and the
oak tree in Figure 7. Note that our modeling needs only a coarse
segmentation.

Foliage extraction Foliage is extracted from the closed region by
the first crown stroke, which roughly follows the crown boundary.
‘GrabCut’ [Rother et al. 2004] extracts object inside a bounding
rectangle by analyzing the different appearance inside and outside
of the rectangle. The ‘GrabCut’ is less effective here as both inside
and outside of the crown stroke could contain significant amount of
leaf colors. For extraction, we simply compute a Gaussian mixture
model (GMM) for the pixel RGB values in the region closed by
the crown stroke. We employ a mixture of 10 Gaussians for large
variation of colors due to the background. Then we take the four
most green or red Gaussian components as leaf clusters. And the
remaining six components are considered as background clusters.
With these appearance models G(Ix, θF), G(Ix, θB) for the fore-
ground and background, we compute a graph-cut based extraction
to detect leaf pixels. Here, G(·, θ) is the pdf function of GMM dis-
tribution, Ix indicates the RGB values at pixel x, θF , θB are GMM
parameters.

At each pixel x, we compute a 0 − 1 label βx via graph cut, where
βx = 0 represents leaf pixels and βx = 1 represents background
pixels. A Gibbs energy of the following form is defined over the
enclosed region of crown stroke

∑

x

Ed(βx, θF , θB) +
∑

(x,y)∈N

Es(βx, βy),

where N is the set of all 4-neighbor pixel pairs,
Ed(βx, θF , θB) = −βxlogG(Ix, θB) − (1 − βx)logG(Ix, θF)

is the data term, and

Es(βx, βy) =

{

0 βx = βy

λ/|Ix − Iy| βx 6= βy

is the smooth term. Graph-cut algorithm [Kolmogorov and Zabih
2002] is applied to minimize this Gibbs energy by assigning a 0 or
1 for each βx. The constant λ indicating the strength of smoothness
is set to 60 in our implementation. Before the extraction, we usually
expand the enclosed region by morphology expansion 10 times to
allow more freedom for the user’s sketching.

Figure 2 shows the result of the foliage extraction from the input
image and the stroke in Figure 1. It is should be noticed that we
do not require a very accurate segmentation, which is an important
advantage of our method.

Visible branch tracing To minimize the user intervention, the
system automatically traces along branch strokes to detect nearby
visible branches in the image. This tracing is trigged after each
branch stroke is drawn. We apply a method inspired by the ‘Lazy
Snapping’ [Li et al. 2004]. Pixels on the branch stroke are used as
samples to compute an appearance model for the branch. All the
other pixels are samples to compute the non-branch appearance.
Again, a GMM model is used for the appearance model. Since the
branch stroke could cover leaf pixels (e.g. in the first example in
Figure 7), we discard the Gaussian component in the branch GMM
if it is too close to some component in the foliage GMM G(Ix, θF).
The branch appearance model is denoted as G(Ix, θT). The ap-
pearance model for non-branch pixels is G(Ix, θN). Typically, 5
Gaussian distributions are used for each model.

108:2 • P. Tan et al.

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

(a) (b) (c)

Figure 3: (a) We move a circle along the branch stroke to trace
visible branches. The fork is detected and a new green branch is
created automatically. (b) The branch is recovered by connecting
all circle centers during tracing. (c) The initial branch is simplified
to discard redundant joints.

With these two appearance models, we move a circle along the
branch stroke from bottom to top. At each position, pixels on the
circle are classified as branch pixel or non-branch pixel by a maxi-
mum likelihood estimation. We use a 0 − 1 variable α to facilitate
this classification, where 0 means branch pixel and 1 for others.
For each pixel x on the circle, we compute αx by maximizing the
following likelihood

(1 − αx)G(Ix, θT) + αxG(Ix, θN).

Typically, multiple branch pixels will be detected on the circle. And
these pixels form clusters. We discard a cluster if there are non-
branch pixels along the line segment connecting the cluster center
and circle center (via the maximum likelihood estimation). The
circle center will move to the remaining cluster center to continue
tracing. In the case of multiple clusters left on the circle, they are
processed in a breadth first manner. The branch skeleton is detected
by connecting all these circle centers during tracing. This skeleton
is overlayed in the image. If the user is not satisfied with this result,
he can add more strokes to correct it or delete wrong branches. This
skeleton is then simplified by discarding redundant joints, which
is not a fork and the branch direction does not change drastically
(< 30o) at that joint. In our implementation, the circle radius is
fixed as 50 pixels for all examples (image resolution at about 1500
pixels).

At the tree root, the branch thickness is also computed by varying
the circle radius to find a largest circle whose pixels are all branch
pixels. This thickness computation is unreliable at small twigs. We
simply set branch radius to 75% of its parent, although better botan-
ical rules can be used according to [Weber and Penn 1995].

As shown in Figure 3 (a), the branch segment indicated by the green
line is correctly detected, although the drawn stroke does not pass
through it. A branch system is retrieved by connecting circle centers
in sequence as shown in (b). This initial result contains many frag-
ment line segments, which is undesirable for the non-parametric
synthesis in Section 3.1. The final branch after discarding some
redundant joints is shown in (c).

3 Tree Growing
Branching structure is the determinant hidden structure of trees.
Once branches are recovered, leaves can be generated along
branches to complete the tree. Many previous tree modeling meth-
ods [Xu et al. 2007; Tan et al. 2007; Neubert et al. 2007] model
trees this way by focusing on the modeling of branch system.

Once visible branches and foliage region are extracted from the im-
age, we develop a tree grow engine to automatically generate the
whole tree branch in 3D space by following the given image. We
only seek a plausible solution that is possible with the tree priors
and the inherent self-similar structural patterns of the tree. Similar

(a) Type I branch replacement

(b) Type II branch replacement

Figure 4: A branch is replaced by a library subtree. We call the red
branch in the subtree as ‘supporting branch’ for easy reference.

engine is used in [Xu et al. 2007; Tan et al. 2007], where 3D points
are used to guide the growth.

3.1 Growth engine

The engine starts with the creation of a library of elementary sub-
trees from the visible branches. Then a non-parametric synthesis
approach is used to systematically generate invisible branches to
complete the branching structure.

Initialization

• Conversion of 2D branches into 3D: Visible branches inter-
actively traced in Section 2 are defined in the image plane. We
first convert these branches from 2D to 3D before growing.
From a single image, there is no enough information to accu-
rately reconstruct the branch position in 3D space. Here, we
employ the approach proposed in [Okabe et al. 2005] to gener-
ate a 3D branch structure from the extracted visible branches.
The basic idea is to greedily adjust branches’ orientation so
that distance among them are as large as possible. We assume
an orthographic camera model to relate 3D branch position
and image coordinate.

• Creation of the library: We then built a library of elementary
subtrees. These library subtrees are built from the recovered
visible branches by taking all its subtrees. If there is too few
subtrees (as the first example in Figure 7), we add predefined
subtrees in the library. Figure 4 shows the predefined subtrees
in our implemented system. Obviously, this predefined library
can be further enriched to handle larger varieties of trees. It
is remarkable that we produced all of our results with only at
most 8 subtrees in the current implementation.

Non-parametric synthesis Starting from the 3D visible branch
and a library, we take a non-parametric approach to grow tree. The
synthesis process simply iteratively replaces an existing branch by a
library subtree. Figure 4 shows a single step of the non-parametric
branch growth. There are two types of branch replacement in our
system. In type I replacement, new branches grow at the end of its
‘supporting branch’ (i.e. shown as the red segment in a subtree). In
type II replacement, new branches can grow along the ‘supporting
branch’.

The selection of the branch to be replaced and the library subtree
is driven by minimizing the cost function defined in Section 3.2.
Each time, the resulting synthesis is pruned by the extracted foliage
silhouette. We empirically run the following three steps iteratively
about 100 times for each tree.

• Selection of a branch to be replaced: We go through a small
set of existing branches and take the one whose replacement
gives the lowest cost function defined in Section 3.2.

Single Image Tree Modeling • 108:3

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

To create this set of existing branches, we choose branches
with larger radius and older generation. We sort all existing
branches according to their radius. Then branches are selected
sequentially from the sorted array. Each branch is selected
with a probability, which is inversely proportional to its gen-
eration.

• Selection of a replacing library subtree: For the selected
branch to be replaced, we search all the available library sub-
trees (at most 8) to find that one giving the lowest cost of the
function defined in Section 3.2.

Except for the subtrees generated from visible branches, the
user can add predefined subtrees: type I, type II or both. A
subtree is rotated around its ‘supporting branch’ and scaled
before it is used to replace some existing branch. There are
two parameters to be determined in this operation.

– The rotation angle of the subtree around its ‘support-
ing branch’ is searched among 12 quantized levels of
360 degrees that gives the lowest cost.

– The scaling factor of the subtree is determined such
that its ‘supporting branch’ is of the same length as the
replaced branch.

• Branch pruning: After replacement, the resulting branches
are pruned based on the detected foliage region and the exist-
ing branches. Any branch going beyond the foliage region is
removed, so are the new branches if they are too close to some
existing branches.

3.2 Data-driven attractors

The growth engine is driven by the data to produce realistic result.
The input image information is 2D and only weakly controls the
growth in the desired tree volume. Hence, we introduce some 3D
points based on heuristics to control the growth better.

Image attractors To make the result after growing similar to im-
age, We define a set of image attractors si, i = {1, 2, · · ·N} that
are sampled evenly in the foliage region with a fixed interval as il-
lustrated by the yellow points in Figure 5 (a). These attractors con-
trol the tree growth by requiring that each attractor should be close
to the resulting tree T . The growth is then driven by minimizing
a cost defined as E2D(T) =

∑

i
dist(si, T), where dist(si, T)

is the distance of an attractor si to the projection of tree T onto
the image. To compute dist(si, T), we also sample a set of points
pi, i = {1, 2, · · ·M} along the image projection of the tree T , as
the blue points in Figure 5 (a). The distance function is then defined
as dist(si, T) = minj(dist(si, pj)).

Extrapolated 3D attractors The image driven growth could lead
to an unbalanced tree, where only front branches are generated.
This is because such an unbalanced tree can minimize the cost
E2D(T) well without any back branches. Similar problem exists
in previous sketching systems like [Okabe et al. 2005]. To alle-
viate this problem the tree is rotated 90 degrees around its main
trunk and merged with the original one in [Okabe et al. 2005]. This
method solves the problem at the cost of creating inconsistent visi-
ble branches with the image.

We introduce some extrapolated 3D points to balance the tree
growth. These 3D points are generated by two steps. First, take
the set of branch joints of the current tree. Then, rotate these joints
90 degree around the main trunk. Here the distance between these
3D points and the tree is to be minimized and the cost is defined
as E3D(T) =

∑

i
dist(di, T). dist(di, T) is the distance between

the 3D point di and the tree T . Again the tree T is sampled as a

(a) (b)

Figure 5: Yellow points in the foliage region are the image attrac-
tors. (a) Blue points are sampled over the tree to compute the dis-
tance between an attractor and the tree. (b) After branch replace-
ment, the distance between attractors and the tree is updated ac-
cording to newly created branches.

(a) (b)

(c) (d)

Figure 6: (a) and (b) are the branch generated by image driven
growth viewed from the front and side. Although the image driven
growth can guarantee the result similar to the image in front, the re-
sult looks unnatural from the side. (c) and (d) are results computed
by alternating image driven growth and 3D point driven growth.
Both front and side results look good.

set of points ti, i = {1, 2, · · · , L} in 3D space along the branch
skeleton to compute the dist(di, T) = minj(dist(di, tj)).

In our current implementation, the growth is driven by alternating
the image attractors and the 3D point attractors. Figure 6 illustrates
the effectiveness of this alternating strategy. The pure image driven
growth yields good results when viewed from the same direction as
the input image as in (a), while unnatural results (b) viewed from
an orthogonal viewpoint. By alternating the image driven growth
and 3D point driven growth, a better result can be obtained in (c)
and (d).

Speedup The growth engine involves a large amount of compu-
tation of the distances between the attractors and the tree. In each
replacement iteration, we only add more branches to the tree and
no existing branch is discarded. So the distance computation in
previous iteration can be reused for speedup purpose. For each at-
tractor s (no matter image point or 3D point), we record its dis-
tance to the tree T n at the n−th iteration as dn

s . At the n + 1−th
iteration, we compute the distance between s and newly created
branches as d̂s. The distance between s and T n+1 is then updated
as dn+1

s = min{dn
s , d̂s}. This is illustrated in Figure 5 (b).

108:4 • P. Tan et al.

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

Figure 9: Modeling woods with multiple trees. On the top is the
input image. The rendering of the recovered model is at the bottom.

4 Completing the Tree
The leaves of the tree are automatically synthesized from the re-
covered branch structure and textured with the input image. Each
leaf is represented by a flat rectangle with the size of 1/10 of the
main trunk radius. Each branch generates from a range of 50 to
200 leaves proportional to it length. The arrangement of the leaves
around the branch is randomized. We keep only those leaves that
are projected inside the foliage region in the input image. Leaves
are textured according to their projected position on the input im-
age. The generic leaf shape, leaf size, density and arrangement of
leaves along a branch are all parameterized in our current imple-
mentation. But the default values are used throughout all examples
of this paper.

5 Results
We test our algorithm with several different examples to demon-
strate its effectiveness. A typical example for a cherry tree down-
loaded from www.flickr.com is shown in Figure 1. Its foliage region
is shown in Figure 2 and its branch tracing procedure is illustrated
in Figure 3. The complete branching structure generated by growth
engine is shown in Figure 1 (c). The complete cherry tree model
is then rendered as in Figure 1 (d). For this example, we draw
two strokes, and used both subtrees of visible branches and pre-
defined subtrees of type I. The branch tracing is realtime, which
provides rapid feedback to the user to decide whether additional
branch strokes are needed. However, the branch growing typically
takes about 20 minutes on a PC with 2.4G CPU. The population of
the tree with leaves takes another 10 minutes.

More examples are shown in Figure 7. For the sycamore tree in
the first row, it takes only two strokes. The tracing does not add
any more branches. Its branching structure is entirely synthesized
from the library of predefined subtrees of type II. For the oak tree
in the second row, it takes three strokes. Part of its visible branches
are traced automatically, but one is missing due to the dense fo-
liage and is added by a second branch stroke. For the second cherry
tree, it takes 3 strokes for the branches as the tracing is more chal-
lenging. The oak tree and cherry tree are both downloaded from
www.flickr.com.

The simplicity of our method makes the modeling affordable for
woods as well. By casually capturing the image shown in Figure 9,

we are able to get all four trees models from a total of 16 strokes in
the input image. The relative positions of trees in 3D is set manu-
ally. A more systematic usage of the method in urban environment
is shown in Figure 8. Trees along a street can only be captured
from close viewpoints due to space constraint, which makes previ-
ous image-based tree modeling methods less applicable. Here, we
model each tree from a single image then align all trees manually
in 3D space. In Figure 8, the trees are modeled with 2, 2, 5, 3, 3,
2, 2 strokes from left to right. All trees are grown with predefined
subtrees of type I.

6 Conclusion & Future Work
We have described a simple and effective system for constructing
realistic tree models from a single image. Our system was designed
to minimize user interaction. The resulting system is simple and
practical in that an amateur user only needs to sketch a few strokes
in the single input image.

There are some directions for future works. For example, we could
fill the gap between this single image based method and previous
multi-views methods to improve the 3D shape while keeping the
modeling simplicity. We could also improve the system in run-
time efficiency to realtime. Another interesting direction for future
research is to make the modeling procedure fully automatic. The
described system could be upgraded to full-automatic if automatic
tree detection and visible branch tracing algorithm are available.

7 Acknowledgement
We thank Marcus Lundberg, Sean Pecor and Jason Ramsay, for
their permission to use their pictures in this paper. Ping Tan is sup-
ported by Singapore FRC Grant R-263-000-477-112. This work
is also supported by Hong Kong RGC Grants 618908, 619107,
619006 and RGC/NSFC N-HKUST602/05.

References

DE REFFYE, P., EDELIN, C., FRANÇON, J., JAEGER, M., AND
PUECH, C. 1988. Plant models faithful to botanical structure
and developmentr. In SIGGRAPH 1988.

KOLMOGOROV, V., AND ZABIH, R. 2002. What energy functions
can be minimized via graph cuts? In Proc. of European Conf. on
Computer Vision.

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy
snapping. SIGGRAPH 2004.

NEUBERT, B., FRANKEN, T., AND DEUSSEN, O. 2007. Ap-
proximate image-based tree-modeling using particle flows. SIG-
GRAPH 2007.

OKABE, M., OWADA, S., AND IGARASHI, T. 2005. Interactive
design of botanical trees using freehand sketches and example-
based editing. In Proc. of Eurographics 2005.

PRUSINKIEWICZ, P., JAMES, M., AND MĚCH, R. 1994. Synthetic
topiary. In SIGGRAPH 1994, 351–358.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In SIGGRAPH 2001.

QUAN, L., TAN, P., ZENG, G., YUAN, L., WANG, J., AND
KANG, S. B. 2006. Image-based plant modeling. SIGGRAPH
2006, 599–604.

Single Image Tree Modeling • 108:5

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

(a) (b) (c) (d)

Figure 7: Examples are sorted in the increasing number of strokes: (a) The single input image. (b) The synthesized branch structure. Subtrees
are shown at the corner. (c) Complete tree model with leaves rendered at the same viewpoint as the input image. (d) Rendered from a novel
view point.

Figure 8: Street-side tree modeling: several input images captured along a street in the top row, and the tree models rendered at the same
viewpoint on the bottom row.

108:6 • P. Tan et al.

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. SIGGRAPH 2004.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. ”grab-
cut”: interactive foreground extraction using iterated graph cuts.
In SIGGRAPH 2004, 309–314.

SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER,
S. 2001. Reconstructing 3d tree models from instrumented pho-
tographs. IEEE Comput. Graph. Appl. 21, 3, 53–61.

TAN, P., ZENG, G., WANG, J., KANG, S. B., AND QUAN, L.
2007. Image-based tree modeling. In SIGGRAPH 2007, 87.

WEBER, J., AND PENN, J. 1995. Creation and rendering of realis-
tic trees. In SIGGRAPH 1995, 119–128.

XU, H., GOSSETT, N., AND CHEN, B. 2007. Knowledge and
heuristic-based modeling of laser-scanned trees. ACM Trans.
Graph. 26, 4, 19.

Single Image Tree Modeling • 108:7

ACM Transactions on Graphics, Vol. 27, No. 5, Article 108, Publication date: December 2008.

