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5.2 The modeling of a Chapel Hill street from 616 images. Two
input images are on the top left; the recovered model rendered is in the
bottom row; and two zoomed sections of the recovered model rendered are
in the middle and on the right of the top row. The data set is provided
by University of North Carolina at Chapel Hill and University of Kentucky
[10]. 99
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(c) The façade segmentation. (d) The regularized depth map. (e) The
geometry. (f) The textured model. 104

xi



5.7 Modeling examples of various blocks (Con’t). (a) The orthographic
texture. (b) The orthographic color-coded depth map (yellow pixel is un-
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The Hong Kong University of Science and Technology

ABSTRACT

Image-based modeling is the process of converting 2D images of the real world into

digital 3D models in computer. Among myriad kinds of objects in the world, man-

made buildings are of special importance, since there are a large number of potential

applications. This challenging problem has been studied by both academic research and

commercial industrial communities. However, all the existing approaches still need plenty

of human efforts in order to produce satisfactory results. This thesis presents a state-

of-the-art automatic approach that only requires minimal human efforts for image-based

building modeling to achieve visual pleasing results. This image-based approach has

three steps: reconstruction, segmentation and modeling. The first step is to reconstruct

a 3D point cloud from the 2D images. The second step is to segment the 3D point

cloud and the 2D images, where each group represents an object or a kind of objects for

modeling. The final step is to model each object by structure analysis and regularization.

This three-step approach is remarkably robust, because it clearly divides the work into

subproblems properly, and conquers each subproblem with strategies according to different

objectives to be achieved in each stage. While this approach is also suitable for general

image-based modeling of any object, specifical focus is on man-made buildings, where

Manhattan-world property presents frequently. This thesis concludes with demonstration

of the proposed approach for building modeling in several cities, including Pittsburgh,

Minneapolis, Chapel Hill in the United States, and Guangzhou in China.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Image-based modeling refers to the process of generating a three-dimensional digital model

from a set of two-dimensional images of a scene, i.e. reconstructing existing models from

photographs, and extracting texture maps directly from photographs to produce photo-

realistic scenes of these meshes as it is in reality, for example, create 3D models of a

town. Image-based modeling technology can be used for modeling scenes or buildings for

architectural purposes, for archaeology databases, for calculations and 3D surveys from

photographs, for creating 3D virtual visits and fast creation of photo-realistic backdrops,

for reverse engineering, for human modeling, for industrial design, for animation and spe-

cial effects, for simple creation of photo-realistic objects for video games, for forensics and

plant engineering. With image-based modeling technology, we can use your computer

offline to measure 3D distances and angles of real scenes: objects of any size, buildings,

landscapes, far distances, inaccessible areas, crime scenes, etc. Furthermore, mechani-

cal, civil and chemical engineers can also use image-based modeling for a diverse set of

measuring and dimensioning tasks.

Especially, image-based modeling for buildings allows us to model of scenes or build-

ings “as built”, create 3D virtual visits, simulate and prototype projects in their final

environment, calculate scenes and 3D surveys from photographs, and match the camera

perspective for overlay of 3D over 2D pictures. There are many applications for image-

based building modeling, such as architectural planning, archaeological reconstructions,

3D earth maps, virtual reality, cultural heritage preservation, military mission simulation,

driving training, and cinematic special effects for movies.

Therefore, a convenient image-based building modeling technology is the key for 3D

modeling and measurement throughout many industry sectors such as architecture and

preservation, archaeology and anthropology, film, video and animation, accident recon-

struction.

Image-based building modeling is especially useful for architectural, preservation, con-

servation and cultural resource management applications, such as documenting and mea-

suring older buildings and structures for conservation and preservation, generating 3D
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models for visualization and view studies, creating elevation drawings of existing struc-

tures and rectified photographs of façades from photo projects, producing photo-textured

3D models for realistic walk-bys, surveying existing structures and objects, etc.

Image-based building modeling is a powerful tool for creating 3D models for animation

and multimedia applications and is used extensively in animation, film and video, and

web site design. We can build 3D models to use in animation and rendering programs,

model objects for Computer Based Training, measure or model sets and locations, perform

perspective matching to synchronize a CG camera to a real photo, export realistic texture

maps from original photographs, create life-like photo-textured models with low polygon

counts, etc.

Accident reconstruction firms, police forces, and forensic teams can also use pho-

tographs or video images taken at the scene, for image-based building modeling and re-

construction, for diagrams and maps of the scene creation, for measurements of distance,

crush, and placement, for ortho-photos generation of skid marks and other surfaces, in

order to make accurate measurements and maps quickly and easily and create archives of

crime scene evidence for analysis at a later date.

1.2 History and the state-of-the-art

Image-based modeling is a subset of techniques under the more general photogrammetry,

in which geometric properties about objects are determined from photographic images.

Therefore, technically, photogrammetry means image-based geometric properties recovery.

Since geometric properties recovery is almost equivalent to geometric modeling, the term

“image-based modeling” is sometimes called “photogrammetry”. Like other seemingly

“modern invention” such as ray-tracing (1960, not 1984) and subdivision surfaces (1978,

not 1998), photogrammetry is actually an old idea revived for modern use in a new

application: digital 3D modeling. A long history can be traced back hundreds of years

ago [11, 12, 13, 14].

As early as 1851, Aimé Laussedat, a military engineer in France, had begun experi-

ments to use images for topographic mapping purposes. In the early period he worked

with hand drawn images, acquired with the help of an optical tool for perspective draw-

ing. Later he started to apply photographs, and in 1859 the prototype of a topographic

camera was built to his specifications. It is therefore generally accepted that Laussedat

is the “father of photogrammetry”.

However, the origin of the term “photogrammetry” came from Albrecht Meydenbauer,

who began his investigations into the use of photographs in measurement without any
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(a) Aimé Laussedat (1819–1907) (b) Albrecht Meydenbauer (1834–1921) (c) Édouard-Gaston Deville (1849–
1924)

Figure 1.1: Father of photogrammetry.

knowledge about the activities of Aimé Laussedat. In 1867, Dr. Meydenbauer published

a paper on this subject in Weekly Journal of the Association of Architects in Berlin with

the title “Die Photometrographie”, in which the first use of the word photogrammetry

appears. Dr. Otto Kersten, a geographical explorer, proposed to replace it by the much

more convenient term “Photogrammetrie”, and Meydenbauer accepted.

In 1885, Édouard-Gaston Deville, Surveyor General of Canada, experimented with

mapping methods developed by Aimé Laussedat to survey in the Rocky Mountains.

Édouard-Gaston used Laussedat’s principle of elevated photography, and refined a tech-

nique of creating large-scale maps from these photographs. He designed a rugged, lightweight

field camera that could be carried long distances. In 1886, his camera was used for the

first time in the Rockies. Édouard-Gaston introduced his innovative mapping technique

at the Chicago World Fair in 1893, later promoting it through pamphlets and a compre-

hensive textbook. This same basic process has been in continuous use for many years.

Indeed, the Institute of Photogrammetry and Remote Sensing in Finland has been teach-

ing photogrammetry as a formal course since 1946.

In 1996, Paul Debevec, Camillo Taylor and Jitendra Malik from UC Berkeley reintro-

duced the photogrammetry as the modern image-based modeling technique for computer

graphics [15]. After that, many scientific researchers and industrial engineers realized the

great importance of image-based modeling, especially for building, and many products

are introduced into the markets.
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1.2.1 Research projects

As mentioned above, under supervision of Jitendra Malik, Paul Debevec and Camillo

Taylor reintroduced photogrammetry as image-based modeling in 1996 [16, 15]. Their

system, called Façade, consists of three main component:

• Photogrammetric Modeling: A method for interactively recovering 3D models and

camera positions from photographs;

• View-Dependent Texture Mapping: A method for turning a 3D model and a set of

photographs from known positions into renderings;

• Model-Based Stereo: A method of refining an approximate geometric model of a

scene to conform to its actual appearance in a set of photographs.

Façade itself remains an unreleased research prototype, but much of its functionality is now

available in commercial products. Façade was a source of inspiration for MetaCreations’

product Canoma written by Robert Seidl and Tilman Reinhardt. In August 2000 Adobe

Systems acquired Canoma and may integrate the technology into a new project to be

released at a future date. Along with computer vision research led by Olivier Faugeras at

INRIA, Façade was also a source of inspiration for RealViz’s ImageModeler image-based

modeling and rendering package, recently acquired by Autodesk.

While Debevec et al. focus on using manual effort for modeling, Seth Teller in MIT

led a project, MIT City Scanning Project [17, 18, 19, 20, 21, 22, 23], to focus on fully-

automated model acquisition in urban areas. Their approach was organized into: sensing,

refinement, and model extraction. They used a pose camera to acquire pose imagery for

spherical mosaics construction. Then, pose-imagery is refined by translational alignment

and rotational alignment. Coarse structure is extracted for consensus texture estimation.

Finally, the detailed relief geometry on each main plane is reconstructed.

Funded by Army Research Office (ARO) of the US government under Multidisciplinary

University Research Initiative (MURI) program, the project “Next Generation 4-D Dis-

tributed Modeling and Visualization of Battlefield” was a collaboration among research

groups led by Avideh Zakhor from UC Berkeley, Ulrich Neumann and Suya You from

USC, William Ribarsky from Georgia Tech and UNC Charlotte, Pramod Varshney from

Syracuse, and Suresh Lodha from UC Santa Cruz.

Zakhor et al. have proposed a system that contains three steps [24, 25, 26, 27, 28,

29, 30, 31]: airborne modeling, ground-based modeling and model fusion. The system

first generates 3D models of rooftops and terrain shape from airborne laser scans and
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photos, by processing airborne laser scans, reconstructing surface geometry, and texture

mapping. Then, it generates 3D models of façades and street scenery as seen from street

level, by ground-based data acquisition, position estimation using scan matching and

Monte-Carlo localization, automated segmentation, mesh generation, simplification and

texturing. Finally, the system merges ground-based and airborne model to one single

model, usable for both walk- and fly-thrus. Zakhor et al. have developed a scheme which

can automatically register aerial imagery onto 3D geometry models in a matter of minutes

instead of hours. They start with a coarse GPS/INS readout and then refine the pose

by applying a series of algorithms including: (a) vanishing point detection; (b) 2D corner

detection and correspondence between 3D model and 2D imagery; (c) Hough transform

to prune possible matches; (d) generalized RANSAC algorithm to find in-lier matches;

(e) Bundle adjustment to compute the 3D camera pose. By taking advantage of the

parallelism and orthogonality inherently present in man-made structures, their system

is able to apply well-justified algorithms to provide a fast and truly automated camera

registration solution for texture mapping.

To improve result quality of the fully automatic reconstruction, Neumann et al. pro-

posed a semi-automatic system [32, 33, 34, 35, 36, 37, 38] to enable the user-guided inter-

action. A semi-automated primitive fitting technique is proposed for surface extraction

to build models from LiDAR data. Primitives are able to fit to image in a few clicks us-

ing primitive constrained outline extraction and user-guided interactive extraction. They

propose a new algorithm “Vanishing Hull” for robust vanishing point estimation to en-

sure edges are vertical and horizontal for uncalibrated texture images rectification. To

remove texture occlusion, a smart removal and filling tool is used to find regions of “best

match” between images for seamless transitions. They also proposed a technique for rapid

modeling by parts. A generic model is used for modeling fitting according to the input

image. User interface facilitates fitting by dragging on parts of a pose-aligned wireframe

model. The algorithm estimates the “best” 3D movement of model parts based on their

constraints. Changes to one part of the vehicle model are propagated to other parts

through connectivity and symmetry constraints and a scattered data interpolation. The

distribution of part changes to other parts prevents gaps in the model and speeds up the

interaction process.

Lodha et al. proposed [39, 40] to train an AdaBoost classifier to perform building,

grass and tree classification. They use height, height variation, normal variation and

return intensity from LiDAR data as the features. A region-growing segmentation is used

to obtain initial segmentation. Then, the region-wide information is again used to improve

classification to deal with multiple returns and edge noise. A min-ε graph algorithm is
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proposed to obtain initial footprint approximation. Finally, a Bayesian optimization is

used to encode the prior information in terms of local angles, i.e., preference for 90 degrees

(right angle) and 180 degrees (straight line).

Funded by DARPA under UrbanScape program, Marc Pollefeys and David Nister and

their collaborators from UNC Chapel Hill and University of Kentucky proposed a system

[41, 10] for automatic, geo-registered, real-time 3D reconstruction from video of urban

scenes. The system collects video streams, as well as GPS and inertia measurements in

order to place the reconstructed models in geo-registered coordinates. It is designed using

current state of the art real-time modules for all processing steps. It employs commodity

graphics hardware and standard CPU’s to achieve real-time performance.

The Graphics and Media Lab in M. V. Lomonosov Moscow State University is also

active on the development of image-based 3D reconstruction approach [42, 43, 44, 45, 46,

47, 48]. They focus on relatively fast, easy and inexpensive creation of photorealist urban

models with medium detailed geometry and high quality textures, sufficient for usage

in wide range of services directed toward common users. Their main intention was the

creation of a system for construction high-quality models with very simple and intuitive

user interface. Their reconstruction process includes the following steps: automatic tilt

correction, semi-automatic segmentation of buildings, semi-automatic texture correction,

and automatic 3D model construction. They have also developed an approach for semi-

automatic registration of images for reconstruction of buildings from multiple views.

The group led by Ioannis Stamos from CUNY is fully dedicated to photorealistic 3D

modeling. They [49, 50, 51, 52, 53, 54, 55] use 3D scanner to obtain range data. Then,

registration of 3D range data and 2D images is performed. Finally, a mesh-simplification

method of the final 3D model based on the segmentation results of each range image is

developed for modeling.

There is a large literature on image-based building modeling. We review several studies

without being exhaustive.

Single-view methods.

Criminisi et al. from Oxford [56] worked on single view reconstruction to reconstruct a

scene from recognizable geometric primitives such as lines, planes and spheres by com-

puting their spatial layout given only one view. Oh et al. from MIT [57] presented an

interactive system to create models from a single image by manually assigning the depth

based on a painting metaphor. Generally, these methods need intensive user interactions

to produce visual pleasing results. Hoiem et al. from CMU [58] proposed surface lay-
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out estimation for modeling. Saxena et al. from Stanford [59] and Torralba et al. from

MIT [60, 61] learned the mapping information between image features and depth directly.

Mueller et al. from ETH focus on image-based procedural modeling. Their approach

relied on repetitive patterns on rectified texture image to discover façade structures, and

obtained depth from manual input. Barinova et al. from Moscow State University [62]

made used of manhattan structure for man-made building to divide the model fitting

problem into chain graph inference. However, these approaches can only produce a rough

shape for modeling objects without lots of details.

Interactive multi-view methods.

Façade, developed by Debevec et al. [15], is a seminal work in this category. They used

line segment features in images and polyhedral blocks as 3D primitives to interactively

register images and to reconstruct blocks with view-dependent texture mapping. How-

ever, the required manual selection of features and correspondences in different views

is tedious, which makes it difficult to be scaled up when the number of images grows.

van den Hengel et al. [63] used a sketching approach in one or more images to model

a general object. But it is difficult to use this approach for detail modeling even with

intensive interaction. Xiao et al. [64] proposed to approximate orthographic image by

fronto-parallel reference image for each façade during automatic detail reconstruction and

interactive user refinement. Therefore, their approach requires an accurate initialization

and boundary for each façade as input, probably manually specified by the user. Sinha

et al. [65] used registered multiple views and extracted the major directions by vanishing

points. The significant user interactions required by these two methods for good results

make them difficult to adopt in large-scale city modeling applications.

Automatic multi-view methods.

Werner and Zisserman [66] used line segments for building reconstruction from registered

images by sparse points. Schindler et al. [67] proposed the use of line features for both

structure from motion and modeling. Dick et al. [68] developed a 3D modeling archi-

tectural modeling method for short image sequences. The user is required to provide

intensive architectural rules for the Bayesian inference. Many researchers realized the im-

portance of line features in man-made scenes. However, line features tend to be sparse and

geometrically less stable than points. Schindler and Bauer [69, 70, 71] is similar with that

developed in [66]. A more systematic approach to modeling urban environments using

video cameras has been investigated by several teams [41, 72]. They have been very suc-

cessful in developing real-time video registration and focused on the global reconstruction
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of dense stereo results from the registered images. Cornelis et al. [73, 74] also included a

recognition component for cars and pedestrians to enhance the modeling process. Finally,

the work by Schindler et al. [67] used the line-based structure from motion for urban

environments. Zebedin et al. [75] is a representative of city modeling from aerial images,

which is complementary to our reconstruction approach from street-level images.

Related projects

The literature related to image-based building modeling is very large. We only highlight

some projects related to our approach.

Photo browsing. Snavely et al. [76, 77, 78, 79] proposed a system for browsing large

collections of photographs in 3D. They used structure from motion technique as first step

for camera calibration. This research project has been implemented as a commercial

product – Microsoft Photosynth.

Street-view reconstruction. Mičušik and Košecká [80] has proposed to do 3D recon-

struct using spherical images. The same date of Pittsburgh from Google Maps Street-view

is used for evaluation of the method in this thesis.

Manhattan structure. Man-made structures always display Manhattan properties in

structure. Among many researches utilizing this approach, Furukawa et al. [81, 82] and

Gallup et al. [83] are especially inspiring.

Image parsing of buildings. Han and Zhu [84] proposed an image parsing of man-

made objects in terms of rectangle primitives, which can be used to reconstruct buildings

from a single image. Berg et al. [85] dedicated on parsing images of architectural scenes.

Košecká et al. [86, 87, 88, 89] also dedicates on building parsing. The on-going eTRIMS

(E-Training for Interpreting Images of Man-Made Scenes) project led by W. Förstner from

University of Bonn, B. Neumann from University of Hamburg R. Šára from Czech Techni-

cal University in Prague, M. Petrou from Imperial College London, L. Hotz from HITEC

Hamburg, concentrates on structural learning, where relations between components and

compositional hierarchies play a central role in object categorization. Such learning is

particularly relevant for the interpretation of man-made objects. Their project will use

the recognition of buildings in outdoor scenes as its exemplary application domain.
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1.2.2 Commercial products

Autodesk ImageModeler and Eos Systems PhotoModeler are two software products that

allow creation of texture-mapped 3-D models from a small number of photographs. Both

of them requires the user to use mouse to click one point in one photograph, and click

another point in another photograph, in order to provide point-to-point correspondences

across different views. Given enough number of these manual correspondences, the soft-

ware can calibrate the camera models for each photograph, and compute the 3D coordinate

of these key points. After that, the user can draw mesh by linking key points.

UZR GmbH & Co KG iModeller 3D, D Vision Works D Sculptor, and Creative Di-

mension Software 3D Software Object Modeller are three software products that use a

predefined and fixed patterns of geometry elements placed on the scene to enable camera

calibration. They require a mask in some photographs to indicate the outline silhouette

of the object of interest. There masks are used to compute a intersection in 3D by visual

hull algorithm to produce a 3D model. The mesh is produced based on the polygon of

intersections.

There are several industrial software systems for tracking objects in video or film and

solving for 3D motion to allow for precise augmentation with 3D computer graphics, such

as Vicon boujou, The Pixel Farm PFTrack, Andersson Technologies LLC SynthEyes,

Science.D.Visions 3D Equalizer, Scenespector Systems VooCAT, Autodesk Maya Live.

Vicon boujou also has modeling ability by triangulation of selected 3D points. The Pixel

Farm PFTrack provides more image-based modeling functions similar with Autodesk Im-

ageModeler. Several companies, such as 2d3, Imagineer Systems, MirriAd, Mova, Orad,

Ooyala, PVI and the like, also use related tracking techniques for interesting applications

from film and video, including new object composition, augmentation with 3D computer

graphics, virtual advertising insertion, virtual television sets creation, visually assisted

landing system, sports analysis, super resolution, image mosaicing, and stabilization etc.

1.3 Overview and organization

With enough human effort, most of the state-of-the-art approaches can achieve satisfactory

results for most applications. Therefore, the remaining open question is: how to achieve

the similar quality with less human effort, i.e., how to improve working efficiency. This

thesis present an automatic approach that only requires minimal human efforts for image-

based building modeling to achieve visual pleasing results. Our image-based approach has

three steps: reconstruction, segmentation and modeling. The first step is to reconstruct a

9



(a) User interface of Autodesk ImageModeler

(b) User interface of Eos Systems PhotoModeler

Figure 1.2: User interface for manual correspondences.
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(a) UZR GmbH & Co KG iModeller 3D

(b) D Vision Works D Sculptor

(c) Creative Dimension Software 3D Software Object Modeller

Figure 1.3: User interface (left) and marker pattern (right).
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(a) Vicon boujou

(b) The Pixel Farm PFTrack

Figure 1.4: User interface of popular matchmoving software.
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3D point cloud from the 2D images. The second step is to segment the 3D point cloud and

the 2D images, where each group represents an object or a kind of objects for modeling.

The final step is to model each object by structure analysis and regularization. This

three-step division is very important, because it clearly divides the work into subproblems

properly, and conquers each subproblem with strategies according to different objectives

to be achieved in each stage. Therefore, in this thesis, we have three chapters, Chapter 2,

3, and 4, to describe the detail of each step. Finally, we evaluate our approach in Chapter

5, and conclude in Chapter 6.
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CHAPTER 2

RECONSTRUCTION

The purpose of reconstruction is to reconstruct a 3D point cloud from the 2D images

and obtain all the parameters of the cameras corresponding to each image. To achieve

this objective, we first obtain pixel-to-pixel correspondences across two or three images.

Then, we can reconstruct the scene and calibrate the cameras using the algorithms from

multiple view geometry [90]. The multiple view geometry is a well-studied research in

the past 20 years of computer vision community, and has achieved significant results to

enable us to robustly reconstruct the scene. Since this reconstruction is only available

to two or three images, we need to merge the reconstruction into a complete scene that

contains all 3D points and camera positions in the same coordinate. Therefore, a sequence

ordering strategy is needed to merge short sequences into long sequence. In this chapter,

we first focus on point-to-point matching across two images. The matching algorithm

is greatly affected on whether camera parameters are known before hand, for example,

given by GPS/INS sensors. In Section 2.1, we introduce a robust point-to-point matching

approach for uncalibrated cameras when no camera information is available. In Section

2.2, when the cameras are known, we address the computation speed problem using

parallel computing technique on Graphics Processing Unit. Then, the ordering strategy

for sequence merging is discussed for building modeling in Section 2.3.

2.1 Uncalibrated dense matching

2.1.1 Introduction

Stereo matching between images is a fundamental problem for 3D reconstruction. Here,

we focus on matching two wide-baseline images taken from the same static scene. Unlike

many previous methods which require that the input images be either calibrated [91] or

rectified [92], we consider here a more challenging scenario in which the input contains

two images only without any camera information. As a consequence, our method can be

used for more general applications, such as motion estimation from structure.
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Related work

Many stereo matching algorithms have been developed. Traditional stereo matching al-

gorithms [92] were primarily designed for view pairs with a small baseline, and cannot

be extended easily when the epipolar lines are not parallel. On the other hand, existing

wide-baseline methods [93] depend heavily on the epipolar geometry which has to be pro-

vided, often through off-line calibration, while other methods can only recover very sparse

matching [94, 95].

Although the epipolar geometry could be estimated on-line, those approaches still fail

frequently for wide-baseline image pairs since the sparse matching result is fragile and

the estimated fundamental matrix often fits only to some parts of the image but not the

entire image. Region growing based methods [96, 97] can achieve denser matching, but

may easily get trapped in local optima. Therefore its matching quality depends heavily

on the result of the initial sparse matching. Also, for image pairs with quite different

pixel scales, it is very difficult to achieve reasonable results due to discrete growing.

Recent research shows that learning techniques can improve the performance of match-

ing by taking matched pairs as training data or by learning the probabilistic image

prior [98] that encodes the smoothness constraint for natural images. However, for a

test image pair, the information learned from other irrelevant images is very weak in the

sense that it is unrelated to the test image pair. Thus the quality of the result greatly

depends on the training data.

Our approach

In this work, we explore the dense matching of uncalibrated wide-baseline images by

utilizing all the local, regional and global information simultaneously in an optimization

procedure. We propose a semi-supervised approach to the matching problem requiring

only two input images taken from the same static scene. Since the method does not rely

on any training data, it can handle images from any scene with stable performance.

We consider two data sets, X 1 and X 2, corresponding to the two input images with

n1 = r1 × c1 pixels and n2 = r2 × c2 pixels, respectively. For p = 1, 2,

Xp =
(
xp

1, x
p
2, . . . , x

p
(sp−1)×cp+tp , . . . , x

p
np

)T

, (2.1)

where xp
(sp−1)×cp+tp represents the pixel located at the coordinate position (sp, tp) in the

p-th image space, sp ∈ {1, · · · , rp}, and tp ∈ {1, · · · , cp}. Here, we define q = 3 − p,

meaning that q = 1 when p = 2 and q = 2 when p = 1, and let i = (sp − 1) × cp + tp.
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For each pixel xp
i , we want to find a matching point located at coordinate position (sq, tq)

in the q-th (continuous) image space, where sq, tq ∈ R. Hence, we can use a label vector

to represent the position offset from a point in the second image to the corresponding

point in the first image: yp
i = (vp

i , h
p
i )

T = ((s1, t1)− (s2, t2))
T ∈ R2. In this way, our label

vector representation takes real numbers for both elements, thus supporting sub-pixel

matching. Let Yp = (yp
1 , · · · , yp

np)
T be the label matrix, and Op = (op

1, · · · , op
np)

T be the

corresponding visibility vector: op
i ∈ [0, 1] is close to 1 if the 3D point corresponding to the

data point xp
i is visible in the other image, and otherwise close to 0 such as a point in the

occluded region. This notion of visibility may also be interpreted as matching confidence.

Obviously, nearby pixels are more likely to have similar label vectors. This smoothness

constraint, relying on the position of the data points, can be naturally represented by a

graph G = 〈V , E〉 where the node set V represents the data points and the edge set E
represents the affinities between them. In our setting, we have two graphs G1 = 〈V1, E1〉
and G2 = 〈V2, E2〉 for the two images where V1 = {x1

i } and V2 = {x2
i }. Let N (xp

i ) be

the set of data points in the neighborhood of xp
i . The affinities can be represented by two

weight matrices W1 and W2: wp
ij is non-zero iff xp

i and xp
j are neighbors in Ep.

In recent years, matching techniques such as SIFT [94] are powerful enough to recover

some sparsely matched pairs. Now, the problem here is, given such matched pairs as

labeled data 〈X1
l ,Y

1
l 〉, 〈X2

l ,Y
2
l 〉 and the affinity matrices W1 and W2, we want to infer

the label matrices for the remaining unlabeled data 〈X1
u,Y

1
u〉 , 〈X2

u,Y
2
u〉. For the sake of

clarity of presentation and without loss of generality, we assume that the indices of the

data points are arranged in such a way that the labeled points come before the unlabeled

ones, that is Xp =
(
(Xp

l )
T , (Xp

u)
T )T

. For computation, the index of the data point can

be mapped by multiplying elementary matrices for row-switching transformations.

In what follows, we formulate in Section 2.1.2 the matching problem under a graph-

based semi-supervised label propagation framework, and solve the optimization problem

via an iterative cost minimization procedure in Section 2.1.3. To get reliable affinity

matrices for propagation, in Section 2.1.4 we learn W1 and W2 directly from the input

images which include color and depth information. The complete procedure of our al-

gorithm is summarized in Algorithm 1. More details are given in Section 2.1.5. Finally,

extensive experimental results are presented in Section 2.2.5.

2.1.2 Semi-supervised matching framework

Semi-supervised learning on the graph representation tries to find a label matrix Ŷp that

is consistent with both the initial incomplete label matrix and the geometry of the data
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manifold induced by the graph structure. Because the incomplete labels may be noisy,

the estimated label matrix Ŷp
l for the labeled data is allowed to differ from the given label

matrix Yp
l . Given an estimated Ŷp, consistency with the initial labeling can be measured

by

Cp
l

(
Ŷp, Op

)
=

∑

xp
i∈X p

l

op
i ‖ŷp

i − yp
i ‖2 . (2.2)

On the other hand, consistency with the geometry of the data in the image space,

which follows from the smooth manifold assumption, motivates a penalty term of the

form

Cp
s

(
Ŷp, Op

)
=

1

2

∑

xp
i ,xp

j∈X p

wp
ijφ

(
op

i , o
p
j

) ∥∥ŷp
i − ŷp

j

∥∥2
, (2.3)

where φ
(
op

i , o
p
j

)
= 1

2

(
(op

i )
2 +

(
op

j

)2)
. When op

i and op
j are both close to 1, the function value

is also close to 1. This means we penalize rapid changes in Ŷp between points that are

close to each other (as given by the similarity matrix Wp), and only enforce smoothness

within visible regions, i.e., op is large.

Local label preference cost

Intuitively, two points of a matched pair in the two images should have great similarity

in terms of the features since they are two observations of the same 3D point. Here, we

use a similarity cost function ρp
i (y) to represent the similarity cost between the pixel xp

i

in one image and the corresponding point for the label vector y in the other image space

(detailed in Subsection 2.1.5). On the other hand, if op
i is close to 0, which means that

xp
i is almost invisible and the matching has low confidence, the similarity cost should

not be charged. To avoid the situation when every point tends to have zero visibility to

prevent cost charging, we introduce a penalty term τ p
i . When op

i is close to 0, (1− op
i ) τ p

i

will increase. Also, τ p
i should be different for different xp

i . Textureless regions should be

allowed to have lower matching confidence, that is, small confidence penalty, and vice

versa. We use a very simple difference-based confidence measure defined as follows

τ p
i = max

xp
j∈N(xp

i )

{∥∥xp
i − xp

j

∥∥}
. (2.4)

Now, we can define the local cost as

Cp
d

(
Ŷp, Op

)
=

∑

xp
i ∈X p

(op
i ρ

p
i (ŷp

i ) + (1− op
i ) τ p

i ) . (2.5)
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Regional surface shape cost

The shapes of the 3D objects’ surfaces in the scene are very important cues for matching.

An intuitive approach is to use some methods based on two-view geometry to reconstruct

the 3D surfaces. While this is a reasonable choice, it is unstable since the structure

deduced from two-view geometry is not robust especially when the baseline is not large

enough. Instead, we adopt the piecewise planar patch assumption [97]. Since two data

points with high affinity relation are more likely to have similar label vectors, we assume

that the label vector of a data point can be linearly approximated by the label vectors of its

neighbors, as in the manifold learning method called locally linear embedding (LLE) [99],

that is

yp
i =

∑

xp
j∈N(xp

i )

wp
ijy

p
j . (2.6)

Hence, the reconstruction cost can be defined as

Cr (Yp) =
∑

xp
i ∈X p

∥∥∥yp
i −

∑

xp
j∈N(xp

i )

wp
ijy

p
j

∥∥∥
2

= ‖(I−Wp)Yp‖2
F . (2.7)

Let Ap = Wp + (Wp)T −Wp (Wp)T be the adjacency matrix, Dp the diagonal matrix

containing the row sums of the adjacency matrix Ap, and Lp = Dp−Ap the un-normalized

graph Laplacian matrix. Because of the way Wp is defined in Section 2.1.4, we have

Dp ≈ I. Therefore,

Cr (Yp) ≈ tr
(
(Yp)T LpYp

)
=

∑

xp
i ,xp

j∈X p

ap
ij

∥∥yp
i − yp

j

∥∥2
. (2.8)

This approximation induces the representation of ap
ij

∥∥yp
i − yp

j

∥∥2
, which makes the inte-

gration of the cost with visibility much easier.

Now, the data points from each image lie on one 2D manifold (image space). Except

for the occluded parts which cannot be matched, the two 2D manifolds are from the

same 2D manifold of the visible surface of the 3D scene. LLE [100] is used to align

the two 2D manifolds (image spaces) to one 2D manifold (visible surface). The labeled

data (known matched pairs) are accounted for by constraining the mapped coordinates

of matched points to coincide. Let X p
c = X p

l ∪ X p
u ∪ X q

u , Ŷp
c =

((
Ŷp

l

)T
,
(
Ŷp

u

)T
,
(
Ŷq

u

)T )T

and Op
c =

(
(Op

l )
T , (Op

u)
T , (Oq

u)
T )T

. We partition Ap as

Ap =

[
Ap

ll Ap
lu

Ap
ul Ap

uu

]
. (2.9)
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Alignment of the manifold can be done by combining the Laplacian matrix as in [100],

which is equivalent to combining the adjacency matrix:

Ap
c =




Ap
ll + Aq

ll Ap
lu Aq

lu

Ap
ul Ap

uu 0
Aq

ul 0 Aq
uu


 . (2.10)

Imposing the cost only on the visible data points, the separate LLE cost of each graph is

summed up:

Cp
r

(
Ŷ1, Ŷ2, O1, O2

)
=

∑

xp
i ,xp

j∈X p
c

(ap
c)ij φ

(
(op

c)i , (o
p
c)j

) ∥∥∥(ŷp
c)i − (ŷp

c )j

∥∥∥
2

, (2.11)

where (ap
c)ij is the element of Ap

c .

Global epipolar geometric cost

In the epipolar geometry [90], the fundamental matrix F12 = FT
21 encapsulates the intrinsic

projective geometry between two views in the way that, for xp
i at position (sp, tp) in one

image with matching point at position (sq, tq) in the other image, the matching point

(sq, tq) should lie on the line (ap
i , b

p
i , c

p
i ) = (sp, tp, 1)FT

pq. This global constraint affects every

matching pair in the two images. For xp
i , we define dp

i (y) to be the squared Euclidean

distance in the image space of the other image between the corresponding epipolar line

(ap
i , b

p
i , c

p
i ) and the matching point (sq, tq):

dp
i (y) =

(ap
i s

q + bp
i t

q + cp
i )

2

(ap
i )

2 + (bp
i )

2 , (2.12)

where y = (v, h)T = ((s1 − s2) , (t1 − t2))
T
. The global cost is now the sum of all squared

distances:

Cp
g

(
Ŷp, Op

)
=

∑

xp
i ∈X p

op
i d

p
i (ŷp

i ) . (2.13)

Symmetric visibility consistency cost

Assume that xp
i in one image is matched with xq

j in the other image. xq
j should also have a

label vector showing its matching with xp
i in the original image. This symmetric visibility
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consistency constraint motivates the following visibility cost

Cp
v

(
Op, Ŷq

)
= β

∑

xp
i ∈X p

(
op

i − γp
i

(
Ŷq

))2

+
1

2

∑

xp
i ,xp

j∈X p

wp
ij

(
op

i − op
j

)2
, (2.14)

where γ
(
Ŷq

)
is a function defined on the p-th image space. For each xp

i , its value via

the γ function indicates whether or not there exist one or more data points that match a

point near xp
i from the other view according to Ŷq. The value at pixel xp

i is close to 0 if

there is no point in the other view corresponding to a point near xp
i , and otherwise close

to 1. The parameter β controls the strength of the visibility constraint. The last term

enforces the smoothness of the occlusion that encourages spatial coherence and is helpful

to remove some isolated pixels or small holes of the occlusion.

The γ function can be computed as a voting procedure when Ŷq is available in the

other view. For each point xq
j at position (sq, tq) in X q with label yq

j =
(
vq

j , h
q
j

)T
=

((s1, t1)− (s2, t2))
T
, equivalent to be matched with a point at position (sp, tp), we place

a 2D Gaussian function ψ (s, t) on the p-th image centered at the matched position cj =

(sp, tp)T . Now, we get a Gaussian mixture model
∑

xq
j
ψcj

(s, t) in the voted image space.

Truncating it, we get

γp (s, t) = min
{
1,

∑

xq
j∈X q

ψcj
(s, t)

}
. (2.15)

Our matching framework combines all the costs described above. We now present our

iterative optimization algorithm to minimize the costs.

2.1.3 Iterative MV optimization

It is intractable to minimize the matching and visibility costs simultaneously. Therefore,

our optimization procedure iterates between two steps: 1) the M-step estimates matching

given visibility, and 2) the V-step estimates visibility given matching. Before each iter-

ation, we estimate the fundamental matrix F by the normalized 8-point algorithm with

RANSAC followed by the gold standard algorithm that uses the Levenberg-Marquardt

algorithm to minimize the geometric distance [90]. Then, we use F to reject the out-

liers from the matching result of the previous iteration and obtain a set of inliers as the

initial labeled data points. The iterations stop when the cost difference between two con-

secutive iterations is smaller than a threshold, which means that the current matching

result is already quite stable. The whole iterative optimization procedure is summarized

in Algorithm 1.
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Algorithm 1 The complete procedure.

1. Compute the depth and occlusion boundary images and feature vectors (Sec-
tion 2.1.5).

2. Compute sparse matching by SIFT and the confidence penalty τ , then interpolate
the results from sparse matching with depth information to obtain an initial solution
(Subsection 2.1.5).

3. Learn the affinity matrices W1 and W2 (Section 2.1.4).

4. while (cost change between two iterations ≥ threshold):

(a) Estimate the fundamental matrix F, and reject outliers to get a subset as
labeled data (Section 2.1.3),

(b) Compute the parameters for the similarity cost function ρ and epipolar cost
function d (Subsection 2.1.5 and 2.1.2),

(c) Estimate matching given visibility (Subsection 2.1.3),

(d) Compute the γ map (Subsection 2.1.2),

(e) Estimate visibility given matching (Subsection 2.1.3).

M-step: estimation of matching given visibility

Actually, the visibility term Cv imposes two kinds of constraints on the matching Ŷ given

the visibility O: First, for each pixel xp
i in the p-th image, it should not match the in-

visible (occluded) points in the other image. Second, for each visible pixel in the q-th

image, at least one pixel in the p-th image should match its nearby points. The first

restriction is a local constraint that is easy to satisfy. However, the second constraint

is a global one on the matching of all points, which is implicitly enforced in the match-

ing process. Therefore, in this step, we approximate the visibility term by considering

only the local constraint [101], which means that some possible values for a label vector,

corresponding to the occluded region, have higher costs than the other possible values.

This variation of the cost can be incorporated into the similarity function ρp
i (y) in Cd.

Let Y =
((

Y1
)T

,
(
Y2

)T )T
. Summing up all the costs and considering the two images

together, our cost function is

CM

(
Ŷ

)
=

∑
p=1,2

(
λlC

p
l + λsC

p
s + λdC

p
d + λrC

p
r + λgC

p
g

)
+ ε

∥∥Ŷ
∥∥2

, (2.16)

where ε
∥∥Ŷ

∥∥2
is a small regularization term to avoid reaching degenerate situations. Fixing

O1 and O2, cost minimization is done by setting the derivative with respect to Ŷ to zero

since the second derivative is a positive definite matrix.
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V-step: estimation of visibility given matching

After achieving a matching, we can recompute the γ map (Subsection 2.1.2). Let O =
((

O1
)T

,
(
O2

)T )T
. Then, summing up all the costs and considering the two images to-

gether, our cost function is

CV (O) =
∑
p=1,2

(
λlC

p
l + λsC

p
s + λdC

p
d + λrC

p
r + λgC

p
g + λvC

p
v

)
+ ε ‖O‖2 , (2.17)

where ε ‖O‖2 is a small regularization term. Now, for fixed Ŷ1 and Ŷ2, cost minimization

is done by setting the derivative with respect to O to zero since the second derivative is

a positive definite matrix.

Since Wp is very sparse, the coefficient matrix of the system of linear equations is also

very sparse in the above two steps. We use a Gauss-Seidel solver or a conjugate gradient

method on GPU [102], which can solve in parallel a large sparse system of linear equations

very efficiently. We can derive that by the way Wp is defined in Section 2.1.4 and the cost

functions defined in Equation 2.16 and Equation 2.17, the coefficient matrix is strictly di-

agonally dominant and positive definite. Hence, both Gauss-Seidel and conjugate gradient

converge to the solution of the linear system with theoretical guarantee.

2.1.4 Learning the symmetric affinity matrix

We have presented our framework which finds a solution by solving an optimization prob-

lem. Traditionally, for W1 and W2, we can directly define the pairwise affinity between

two data points by normalizing their distance. However, as pointed out by [103], there

exists no reliable approach for model selection if only very few labeled points are avail-

able, since it is very difficult to determine the optimal normalization parameters. Thus

we prefer using a more reliable and stable way to learn the affinity matrices.

Similar to the 3D visible surface manifold of Equation 2.6 in Section 2.1.2, we make

the smooth manifold and linear reconstruction assumptions for the manifold in the image

space. We also assume that the label space and image space share the same local linear

reconstruction weights. Then we can obtain the linear reconstruction weight matrix Wp

by minimizing the energy function EWp =
∑

xp
i ∈X p Exp

i
, where

Exp
i

=
∥∥∥xp

i −
∑

xp
j∈N(xp

i )

wp
ijx

p
j

∥∥∥
2

. (2.18)

This objective function is similar to the one used in LLE [99], in which the low-

dimensional coordinates are assumed to share the same linear reconstruction weights
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with the high-dimensional coordinates. The difference here is that we assume the sharing

relation to be between the label vectors and the features [104]. Hence, the way we con-

struct the whole graph is to first shear the whole graph into a series of overlapped linear

patches and then paste them together. To avoid the undesirable contribution of negative

weights, we further enforce the following constraint

∑

xp
j∈N(xp

i )

wp
ij = 1, wp

ij ≥ 0. (2.19)

From Equation 2.18, Exp
i

=
∑

xp
j ,xp

k∈N(xp
i )

wp
ijG

i
jkw

p
ik, where Gi

jk =
(
xp

i − xp
j

)T
(xp

i − xp
k).

Obviously, the more similar is xp
i to xp

j , the larger will wp
ij be. Also, wp

ij and wp
ji should be

the same since they both correspond to the affinity relation between xp
i and xp

j . However,

the above constraints do not either enforce or optimize to have this characteristic and the

hard constraint wp
ij = wp

ji may result in violation of Equation 2.19. Hence, we add a soft

penalty term
∑

ij

(
wp

ij − wp
ji

)2
to the objective function. Thus the reconstruction weights

of each data point can be obtained by solving the following quadratic programming (QP)

problem

min
Wp

∑

xp
i ∈X p

∑

xp
j ,xp

k∈N(xp
i )

wp
ijG

i
jkw

p
ik + κ

∑
ij

(
wp

ij − wp
ji

)2
(2.20)

s.t. ∀xp
i ∈ X p,

∑

xp
j∈N(xp

i )

wp
ij = 1, wp

ij ≥ 0.

After all the reconstruction weights are computed, two sparse matrices can be constructed

by Wp =
[
wp

ij

]
while letting wp

ii = 0 for all xp
i . In our experiment, Wp is almost symmetric

and we further update it by Wp ← 1
2

(
(Wp)T + Wp

)
. Since the soft constraint has

made Wp similar to (Wp)T , this update just changes Wp slightly, and will not lead to

unreasonable artifacts. To achieve speedup, we can first partition the graph into several

connected components by the depth information and super-pixel over-segmentation on

the RGB image, and break down the large QP problem into several smaller QP problems

with one QP for each connected component, then solve them one by one.

2.1.5 Initialization and similarity

The feature vectors are defined as RGB color. For each image, we recover the occlusion

boundaries and depth ordering in the scene. The method in [105] is used to learn to

identify and label occlusion boundaries using the traditional edge and region cues together
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with 3D surface and depth cues. Then, from just a single image, we obtain a depth

estimation and the occlusion boundaries of free-standing structures in the scene. We

append the depth value to the feature vector.

Label initialization by depth

We use SIFT [94] and a nearest neighbor classifier to obtain an initial matching. For

robustness, we perform one-to-one cross consistency checking, which matches points of

the first image to the second image, and inversely matches points of the second image to

the first image. Only the best matched pairs consistent in both directions are retained.

To avoid errors on the occlusion boundary due to the similar color of background and

foreground, we filter the sparse matching results and reject all pairs that are too close to

the occlusion boundaries. Taking the remaining as seed points, with the depth informa-

tion, region growing is used to achieve an initial dense matching [97]. Then, the remaining

unmatched part is interpolated. Assuming the nearby pixels in the same partition lie on

a planar surface, we estimate the homography transformation between two corresponding

regions in the two images. With the estimated homography, the unknown regions are

labeled and the occlusion regions are also estimated.

Computing the similarity cost function

As mentioned in Section 2.1.2, the continuous-valued similarity cost function ρp
i (y) repre-

sents the difference between point xp
i and the matching point, characterizing how suitable

it is for xp
i to have label y = (v, h)T . Since our algorithm works with some labeled data

in a semi-supervised manner by the consistent cost Cl, the local cost Cd just plays a sec-

ondary role. Hence, unlike the traditional unsupervised matching [101], our framework

does not heavily rely on the similarity function ρp
i (y). Therefore, for efficient computa-

tion, we just sample some values for some integer combination of h and v to compute

ρp
i (y) = exp(−‖xp

i−xq
j‖2

2σ2 ). We normalize the largest sampled value to 1, and then fit ρp
i (y)

with a continuous and differentiable quadratic function ρp
i (y) = (v−vo)2+(h−ho)2

2σ2 , where

(vo, ho) and σ are the center and spread of the parabola for xp
i .

2.1.6 Experiments

In all our experiments performed on a desktop PC with Intel Core 2 Duo E6400 CPU

and NVIDIA GeForce 8800 GTX GPU, the number of iterations is always less than 9

before stopping and the computation time is less than 41 seconds for each image pair,
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(a) Input image [93] (b) Result from [1] (c) Result of our method

Figure 2.1: Comparison with [1]. Attention should be paid to the fine details outlined

by red circles. Also, our method can correctly detect the occluded region and does not

lead to block artifacts that are typically given by Graph-cut. Subfigure (b) is extracted

from Figure 7 of [1]. The input dataset is from C. Strecha [2].

excluding the time spent on estimating the depth for a single image by [105]. We set the

parameters to favor Cl and Cg in the M-step and Cv in the V-step. Since there is no

ground truth in searching for good parameter values, we tune the parameters manually

and then fix them for all experiments. To solve the QP problem for Wp, we first compute

a “warm start” without involving the positive constraints using the method in [99], and

then run the active set algorithm on this “warm start”, which converges rapidly in just a

few iterations. We demonstrate our algorithm on various data sets in Figure 2.1.6, most

of which have very complex shape with similar color that makes the matching problem

very challenging. Compared with [1], our method can produce more detail, as shown in

Figure 2.1.6. In the figures of the matching results, the intensity value is set to be the

norm of the label vector, that is ‖y‖, and only visible matching with o > 0.5 is shown.

Application to 3-view reconstruction

In our target application, we have no information about the camera. To produce a 3D

reconstruction result, we use three images to recover the motion information. Five ex-

amples are shown in Figure 2.1.6. The proposed method is used to compute the point

correspondence between the first and second images, as well as the second and third im-

ages. Taking the second image as a bridge, we can obtain the feature tracks of three views.

As in [106], these feature tracks across three views are used to obtain projective recon-

struction by [107], and are metric upgraded inside a RANSAC framework, followed by

bundle adjustment [90]. Note that the feature tracks with too large reprojection errors are

considered as outliers and are not shown in the 3D reconstruction result in Figure 2.1.6.
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(a) City Hall Brussels (b) Bookshelf

(c) Valbonne Church

(d) City Hall Leuven (e) Temple (f) Shoe

Figure 2.2: Example output on various datasets. In each subfigure, the first row

shows the input images and the second row shows the corresponding outputs by our

method. The bookshelf data set is from J. Matas; City Hall Brussels and City Hall

Leuven data set are from C. Strecha [2]; Valbonne Church data set is from the Oxford

Visual Geometry Group, while the temple data set is from [3] and the shoe data set is

from [4].
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(a) Temple (b) Valbonne Church (c) City Hall Brussels

(d) City Hall Leuven (e) Semper Statue Dresden

Figure 2.3: 3D reconstruction from three views. In each subfigure, the first row

contains the three input images and the second row contains two different views of the

3D reconstruction result. Points are shown without texture color for easy visualization

of the reconstruction quality. City Hall Brussels, City Hall Leuven, and Semper Statue

Dresden data set are from C. Strecha [2]; Valbonne Church data set is from the Oxford

Visual Geometry Group, while the temple data set is from [3].

Discussion

In this section, we propose a graph-based semi-supervised symmetric matching framework

to perform dense matching between two uncalibrated images. Possible future extensions

include more systematic study of the parameters and extension to multi-view stereo.

Moreover, we will also pursue a full GPU implementation of our algorithm since we

suspect that the current running time is mostly spent on data communication between

the CPU and the GPU.
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Πm1

Πm2

Πm3

Figure 2.4: Illustration of multi-view stereo.

2.2 Stereo matching on GPU

2.2.1 Introduction

In this section, we propose a real-time belief propagation stereo approach. To our knowl-

edge, it is the first real-time multi-view stereo approach based on belief propagation of

global optimization. This algorithm is based on a global energy-minimization framework

which contains two terms, the data term and smoothness term. Thus our method can

be treated as a two-step algorithm: the construction of the data term and the iterative

optimization of the smoothness term. The real-time performance is achieved by hardware

support Z-culling for fast-converging belief propagation, utilization of temporal coher-

ence information for message initialization, and hardware texture interpolation on GPU.

The high-quality result is achieved by render target division, and adaptive depth labeling

meaning, with guarantee by belief propagation to achieve MAP configuration.

The inputs to the algorithm are N images at different camera positions and their

respective camera projection matrices Pk = KkRk [I| − Ck], where Kk is the camera

calibration matrix, and Rk, Ck are the rotation and translation of camera Pk with respect

to the reference camera Pref . The reference camera is assumed to be the origin of the

coordinate system. Accordingly its projection matrix is Pref = Kref [I3×3|0].

Now, our problem is to compute the depth map for the reference camera. We treat the

depth at each pixel as unknown variable, and connect these unknown variables with its

four direct neighbors by an undirected edge. Hence, we get a graph of the unknown depth

variables and want to get a MAP depth value configuration for this graph. Assuming all

probabilities are nonzero, the Hammersley-Cliord theorem (e.g., [1]) guarantees that the

probability distribution will factorize into a product of functions of the maximal cliques
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of the graph.

Denoting by x the values of all unknown variables in the graph, and each node xp has

a corresponding node yp that is connected only to xp. Assuming all the cliques consist of

pairs of units, then we have

P (x, y) =
∏
p,q

Ψpq (xp, xq)
∏
pp

Ψpp (xp, yp) .

where the first product is over connected pairs of nodes. Assuming the Markov blanket

property, we can use the loopy belief propagation scheme used in [108]. At every iteration,

each node sends a (different) message to each of its neighbors and receives a message from

each neighbor. Let xp and xq be two neighboring nodes in the graph. We denote by

mpq (xp, xq) the message that node xp sends to node xq , by mpp (xp) the message that yp

sends to xp, and by bp (xp) the belief at node xp. The max-product update rules are

mpq (xq) ← α max
xp



Ψpq (xp, xq) mpp (xp)

∏

xk∈N(xp)\xq

mkp (xp)





bp (xp) ← αmpp (xp)
∏

xk∈N(xp)

mkp (xp)

where α denotes a normalization constant and N (xp) \xq means all nodes neighboring xp,

except xq. The procedure is initialized with all message vectors set to constant functions.

Observed nodes do not receive messages and they always transmit the same vector – if

yp is observed to have value y∗ then mpp (xp) = Ψpp (xp, y
∗). The normalization of mpq is

not necessary – whether or not the message is normalized, the belief bp will be identical.

However, normalizing the messages avoids numerical underflow and adds to the stability

of the algorithm.

2.2.2 Loopy belief propagation on GPU

Instead of computing the max-product, we can do some mathematical manipulation, and

compute the min-sum [6]:

mt
pq (xq) = min

xp


V (xp, xq) + Dp (xp) +

∑

s∈N(p)\q
mt−1

sp (xp)




bq (xq) = Dq (xq) +
∑

s∈N(q)

mT
pq (xq)
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Now, let h (xp) = Dp (xp) +
∑

s∈N(p)\q mt−1
sp (xp). As in the traditional two rectified cases,

we also assume the smoothness constraint is represented by a truncated linear model:

V (xp, xq) = min (s ‖xp − xq‖ , d)

where s is the rate of increase in the cost, and d controls when the cost stops increasing.

Under this assumption, we can break down the message update as three passes to avoid

redundant computation.

Forward Pass

for xq from 1 to k − 1:

m (xq) ← min (m (xq) , m (xq − 1) + s).

Backward Pass

for xq from k − 2 to 0:

m (xq) ← min (m (xq) , m (xq + 1) + s).

Truncated Pass

mpq (xq) ← min
(
m (xq) , minxp h (xp) + d

)
.

Z-culling for fast converging

For standard BP algorithms, in order to achieve the best stereo results, a large number of

iterations are required to guarantee the convergence. However, since the running time is

linear to the number of iterations, large number of iterations will greatly hurt the practical

application of BP algorithms.

There are lots of redundant computations involved in standard BP. In essence, by only

updating pixels that have not yet converged, fast-converging BP removes those redundant

computations while achieving almost the same accuracy as standard BP. So after the pixel

shader update the message vectors, we can compare the difference between its new value

and its old value from the previous steps. If this difference is too small, we may argue

that this pixel is almost converged and stop the further processing for this pixel. This is

done by just set the Z-value for this pixel in the pixel shader, to be large enough such

that it is outsides the viewing frustum, and hence it is invisible and will not be computed

any more.

Render target division

Now, let’s consider the problem of encoding all messages sent out from one pixel to its

four direct neighbors. Using the multiple render target (MRT) technique, we can render
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4 output targets (8 in DirectX 10) with 4 channels for each target. So, totally, we can

output 16 float values in each rendering pass. But for each pixel, since we have to store

the messages sent to the four directions (up, right, down, left), we can only have 4 float

values for each message vector, i.e., we can only have 4 possible depth values.

u

v

Figure 2.5: Breaking down the render target.

Of course, we can perform the same computation several times and for each time, we

only output some parts of the message vectors. But in this way, the same computation

is wasted. To avoid redundant computation, a key observation is that for the message

updating, the message sent to one direction is independent of all the messages sent to

the other directions. Hence, instead of restrict one pixel in the reference image to be one

pixel in the quad that we render, we can break it down to correspond with 4 pixels in the

quad as in Figure 2.2.2. By checking the coordinate, the pixel shader can determine now

what direction the message that will be sent to and do the corresponding computation. In

such a way, we can handle 16 depth labels. In the new DirectX 10, since we can render 8

target at one pass, totally 32 depth labels are allowed, which is sufficient in most real-time

application cases. For more depth labels desired, we can use the technique described in

Section 2.2.4.

Temporal coherence for message initialization

One good thing that inherent in belief propagation is that the initialization of the mes-

sages can affect the convergence speed and also the final result. For video stereo depth

estimation, instead of using coarse-to-fine hierarchical way to initialize the messages which

is also bring a lots of overhead, we prefer to utilize the temporal coherence information to

initial the messages based on the messages in the previous frame. Assuming the object

in the camera move enough slow comparing with the frame frequency, our method in fact

can give the almost optimal initial value for the current frame by claiming that the depth

31



map between two consecutive frames is almost the same. In this way, we only need very

few numbers of passes in the pixel shader to achieve satisfactory results.

2.2.3 Fast data cost computation

Before we start the optimization by belief propagation, we have to compute Dq (xq) first.

For a pixel in the image plane with depth d, if we assume the skew of the reference camera

is 0, we can get the 3D position of the corresponding point position as:




x
y
z


 =




(
xref − pxref

)
d/fxref(

yref − pyref

)
d/fyref

d


 ,

where fxref
and fyref

is the focal length of Pref , while pxref
and pyref

are the principal

point offset. Thus, the location (xk, yk) in image Ik of the mapped pixel (x, y) of the

reference view is computed by:

[
xk yk wk

]T
= KkRk [I| − Ck]

[
x y z 1

]T
.

Now, if the plane intersects the surface projected to pixel (x, y) in the reference view,

the colors of Ik

(
xk

wk
, yk

wk

)
and Iref (x, y) should be similar assuming Lambertian surfaces.

Hence, we can have a likelihood computed from the difference between Ik

(
xk

wk
, yk

wk

)
and

Iref (x, y). Here, we use the sum of truncated absolute difference (STAD) between the

corresponding pixels:

∑

k

min

(
1

3

∑
C=R,G,B

αC

∣∣∣∣IC
ref (x, y)− IC

k

(
xk

wk

,
yk

wk

)∣∣∣∣ , cmax

)

where cmax is the truncation value and is set to 33 in the experiment.

However, instead of computing the texture coordinate of each pixel for each depth by

the above transformation, a much inexpensive way is to make use of the hardware texture

interpolation ability. The idea is just to try to compute the coordinates (xk, yk) in the

image Ik by this transformation for the only four vertices of the quad that we render as

GPGPU technique, and then use the graphics hardware to interpolate the coordinates

(xk, yk) from the four corner of the quad.

However, since the hardware interpolation is based on the reference camera Pref , but

not the camera Pk. So the texture that we look up by just using (x, y) is incorrect (

Figure 2.2.3 ). Here, instead of just storing the (xk, yk) for the four corner vertices of
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Figure 2.6: Incorrect hardware interpolation.

16 labels depths tsukuba map cones teddy

CPU Implementation[6] 3.4332s 1.7212s 3.5565s 3.7100s
CPU Implementation[7] 1.1100s 0.7000s 1.6900s 1.6300s

Our CPU Method without Hierarchy (30 iter) 2.6653s 1.4504s 3.8475s 3.8624s
Our CPU Method with Hierarchy (4 iter 5 level) 0.4354s 0.2520s 0.6775s 0.6680s
Our GPU Method without Hierarchy (30 iter) 0.0155s 0.0154s 0.0158s 0.0156s

Our GPU Method with Hierarchy (4 iter 5 level) 0.0034s 0.0034s 0.0033s 0.0033s

Table 2.1: Time comparison for the results in Figure 2.2.5.

the quad, we store the whole (xk, yk, wk) and then interpolate the whole triple with wk.

Then for each pixel in the pixel shader, instead of doing texture lookup with interpolated

coordinate (x, y), we use the coordinate
(

x
w
, y

w

)
which will get the correct result.

2.2.4 Adaptive labeling depth

As mention before, in order to be able to update the messages without redundant compu-

tation, even with MRT technique, we can only handle up to 16 depth labels. In order to

produce the high quality result, we have to increase the possible number of depth labels.

The idea is to change the meaning of the depth labels. Rather than force each label for

each pixel has the same depth meaning, we can variate the depth meaning for different

pixel.

There is two catalogs to handle this. One is to use a coarse-to-find approach to first

use all depth labels to span the whole depth interval [dnear, dfar]. Then after several

iterations, say j, we can find the best one, and then shrink the spanning interval to be

a smaller one centered at the current best depth estimation. This idea can be further

extends to let the spanning interval to be divided into i intervals with each one center at

the top i depth estimation in the previous estimation. In particular, when j = 1 = i, we

update the interval each pass adaptive according to the current depth estimation.
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The other way is for video with temporal coherence, we can just make the depth

labels spanning a small range of depths centered at the depth estimated in the previous

video frame. But for the object boundary, this method is incorrect since the depth can

change dramatically. To handle this, instead of using one depth interval centered at the

depth estimated for the same pixel in the previous video frame, we can use several depth

intervals centered at the depths estimated in the previous video frame for not just the

same pixel, but also the neighbor pixels. By using multiple possible depth intervals, the

problem is solved.

These two ways is not exclusive and can be used together to further refine the result

with only limit number of possible labels. In term of implementation, in order to know

the actual meaning of the depth labels, we have to record the actual depth of the depth

labels, correspondingly compute, in the pixel shader, the parameter s in the truncated

linear model for smoothness constraint on the fly.

2.2.5 Experiments

We tested our algorithm on a 2.13 GHz Dual-core PC with 1GB RAM. The GPU is a

Geforce 8800 GTX graphics card with 512M video memory from NVIDIA. All shaders are

implemented using Cg with OpenGL. The following experiments are conducted to evaluate

both the quality and efficiency performance of our algorithm. Figure 2.2.5 compare the

result of two view stereo with the other two implementations. And the time to generate

these results is given in Table 2.2.3.

Cameras Synchronization Since our method is very fast, we can use it to synchronize

different cameras. For instance, we have four Point Grey cameras and two PC. So each PC

has two cameras mounted. For the two cameras in the same PC, we can easily synchronize

it by software API. In our cases, we use Point Grey MultiSync software to synchronize the

two cameras in the same PC. Now, the problem is to synchronize the camera between two

different PCs. In stead of using IEEE1394 hardware signal to synchronize, our approach

is first to record the videos separately. Since we have synchronized the two cameras in

the same PC, we can use our proposed method to compute the depth from two pairs of

cameras. After that, we have two depth map videos, and we can use brute force search

to find the best match and thus synchronize them.

Discussions In this section, we address multi-view stereo under a global optimization

approach based on belief propagation while maintaining real-time performance. To our

knowledge, it is the first real-time multi-view stereo approach based on belief propagation
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of global optimization. Also, based on the high-speed computation of our methods, a novel

application to our method for automatic camera synchronization is proposed. Real world

examples demonstrate the efficiency of our method. Possible future extensions include the

optimization together with the temporal smoothness constraints. Our progressing work

is to, rather than frame-by-frame, construct a 3D grid graph together with time-axis to

achieve the global optimization for the full video sequences.

2.3 Sequence merging strategy

After achieving a set of point correspondences between image pairs, we now need to divide

the whole set of images into subsequences for reconstruction, and merge the reconstruc-

tion results from subsequences while performing metric upgrade at some time. At the

same time, it’s not a good idea to compute all the camera locations and use the bundle

adjustment only once on the whole sequence. In that case, increasing errors could produce

an initial solution too far from the optimal one for the bundle adjustment to converge.

Thus it is necessary to use the bundle adjustment throughout the reconstruction of the

sequence.

We argue that different strategies should be used for different input data. If the

objective of the reconstruction is to model a specific object, we may take photos in a

circular movement towards that object. To guarantee the robustness, we use a hierarchical

method for merging. Or, if we cannot control the image capture procedure, and only get

a set of unstructured data, we have to use more general method. For other situations,

such as street-view city modeling, even the data capture is well controlled, we still cannot

afford the computation cost of the hierarchical method, and a incremental method with

local bundle adjustment will be used.

2.3.1 Strip sequence with hierarchical merging

A strip sequence is an image sequence with known single strip order such that the camera

positions of two consecutive images are most close. A circular sequence is a special case.

In our method, the strip sequence (1, 2, . . . , n) is divided into two parts with an overlap

of two frames in order to be able to merge the sequence, i.e.
(
1, . . . ,

⌊
n
2

⌋
,
⌊

n
2

⌋
+ 1

)
and(⌊

n
2

⌋
,
⌊

n
2

⌋
+ 1, . . . , n

)
. Each subsequence is recursively divided in the same way until each

final subsequence contains only three images.

Now in each image triplet, taking the middle image in the triplet, the i-th image, two

pairs of consecutive images, (i, i− 1) and (i, i + 1) are matched as described in Section
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Figure 2.7: Result comparison on Middlebury dataset [5]. The first row is the

ground truth. The second row is produced by the source codes provided by [6]. The third

row is produced by the donated executable file from Qingxiong Yang [7]. The fourth row

is the result of our CPU method. The fifth row is the result of our GPU method. The

last row is our result of the other two datasets with CPU version on the left and GPU

version on the right. The corresponding running times are listed in Table 2.2.3.
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2.1. Using the i-th image as the bridge, we get a set of point correspondence tracks across

the three images. Now, the trifocal tensor T can be estimated by the Gold Standard

algorithm[90] under a RANSAC framework followed by a bundle adjustment to minimize

the projection errors.

In order to merge two sequences
(
. . . ,

⌊
n
2

⌋
,
⌊

n
2

⌋
+ 1

)
and

(⌊
n
2

⌋
,
⌊

n
2

⌋
+ 1, . . .

)
, we use

the last 2 cameras
⌊

n
2

⌋
and

⌊
n
2

⌋
+ 1. As the images are the same, the cameras associ-

ated after merging must be the same. Suppose a point has coordinate Xi in the first

sequence and X′
i in the second. If all measurements were perfect, then there would exist

a homography H of 3-space between the two projective frames such that Pj = P ′
jH

−1

and Xi = HX′
i, where Pj, P ′

j are the corresponding camera matrices for images common

to the subsequences. With real image sequences the relationship will not obeyed exactly,

and the homography is estimated with least square. Then, a bundle adjustment is used

on the result of the merging operation. If the subsequence is metric, instead of estimating

the homography, we estimate a similarity transformation which includes rotation, scale

and translation. Merging is done until the whole sequence has been reconstructed. For

close circular sequence, we do the matching between the first and the last image, and

add the reconstruction points into the sequence. Finally, the reconstruction ends with a

global bundle adjustment.

For a short sequence, we perform all projective reconstruction and after achieved a

global bundle adjusted reconstruction, we upgrade it to metric. For a longer sequence,

this method may not good due to the accumulated error in the projective reconstruction.

Hence, if a subsequence has more than 60 images, we metric upgrade it first before further

merging.

2.3.2 Unstructured sequence with clustering based merging

If we cannot control the image capture procedure, and only get a set of unstructured

data, we have to use more general method. In [76], an initial image pair is selected and

the camera parameters for this pair are estimated using the five point algorithm, then

the tracks visible in the two images are triangulated with a two frame bundle adjustment

starting from this initialization. Then, they add one camera at a time to the optimization

in an incremental manner. Hence, their method is very sensitive to the error in the initial

frame. Instead, we still want to use a hierarchical merging method that is more robust.

Since the image sequence is in unorganized way, a more general graph clustering based

merging method is proposed.

Using the correspondences between all image pairs, we can construct an image con-
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(a) Before a and b is merge.

a

b
dxc

(b) After a and b is merge.

Figure 2.8: Node contraction.

nectivity graph, in which each image is a node and an undirected edge exists between any

pair of images with enough matching correspondences. The weights on the edges between

the image pairs are defined as the multiplication of image-based distance computed in the

previous section and the square root of the number of point correspondences. Hence, if

the number of point correspondences is large and the transformation is not too degenerate

to a planar homography, the weight will be large.

Now, we hierarchically cluster the nodes in the graph. For each step, we choose the

edge with the largest weight, corresponding to the pair of images with largest image-based

distance, and merge the two nodes. These two nodes will be contracted into a single node

in the graph. All edges incident to any of these two nodes will be incident to the new

node from contraction.

Hence, there are two types of nodes: nodes representing a single image, and nodes

representing a subsequence. At the beginning of the hierarchical merging operation,

each node represents one single image. After merging, the contracted node represents

a subsequence. If two image nodes are merged, the fundamental matrix will be estimated

to achieve a projective reconstruction. If an image node and a subsequence node is

merged, the point correspondences between the single image and all images from the

subsequence will be used to estimated the camera matrix of the image node by the DLT

method [90] inside a RANSAC framework. If two subsequence nodes are merged, the

point correspondence tracks are first merged, and then the homograph transformation is

estimated as in Section 2.3.1. In all three kinds of merging, a bundle adjustment is used

to refine the merging results. As before, if a merging result is a subsequence containing

more than 60 images, it is metric upgraded with an extra bundle adjustment.

In detail, as shown in Figure 2.3.2, supposed two nodes a and b are contracted into

a single node x, and there are some edges (a, c), (a, d) and (b, d). Since b and c is

not connected, there will be one edge (x, c) after merging. But since both a and b are

connected with d, the situation is complicated. Because we want to try our best to

preserve the relation between (a, d) and (b, d)in order to improve the robustness if later

we merge x and d, these two edges should both be preserved. And there will be two edges

between x and d. If later, any one of the two edges between x and d is found to have
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the largest weight in the graph, x and d will be merged, and all edges between x and d

will be used to compute the image correspondence tracks. If the edge between x and d is

used due to its largest weight value, it must have the largest weight value among all edges

between x and d. Hence, in practice, we don’t need to store the two edges explicitly but

just store the largest weight edge and merge the information of the other edges into this

largest weight edges.

Our method is naturally adoptable for acceleration of large sequence reconstruction.

In order to speed up for large sequence merging, the bundle adjustment strategy can be

different. Assume now we want to merge a large subsequence with another subsequence

or image, instead of doing bundle adjustment with all camera parameters and all points’

3D coordinates, we just do the bundle adjustment on the transformation parameters, i.e.

the homography between one projective subsequence with another (metric or projective)

subsequence, the camera parameters for an image node, or the similarity transformation

between two metric subsequences.

2.3.3 Long sequence with incremental merging

For very long sequence such as in the application for street-view city modeling, the above

two strategies is still too slow for computation. For such a long sequence, any global

bundle adjustment should be avoided. Hence, we use an incremental method with local

bundle adjustment only, and add in one camera at a time. We begin by estimating a

short sequence at the very beginning with the method in Section 2.3.1. Next, we add

another camera to the optimization, and initialize the new camera’s parameters using

DLT technique inside a RANSAC procedure with local bundle adjustment in the last few

frames as in [109].

To improve robustness, we make a few modifications to the basic procedure outlined

above. After every bundle adjustment run, we detect outlier tracks that contain at least

one keypoint with high reprojection error, and remove these tracks. We then rerun the

bundle adjustment, rejecting outliers after each run, until no more outliers are detected.

If a subsequence is metric upgraded, we also reject a point if it has projection obser-

vation on a particular camera and its 3D position is behind that camera. This can be

checked by the dot product between the camera orientation vector and the vector between

the point and the camera position. Finally, we reject the points too far away form the

center of the point cloud, such as the point for the cloud in the sky. Although these very

far away points may be at correct position, they are sensitive to noise and their existence

will drift the whole sequence into bad local minimal during bundle adjustment. For each
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image, we also reject a point with projection in it, if there exist several nearby points

(from different directions in the image) with projection very close to the projection of

that point, and are very far away from that point in 3D space. After the outlier rejection,

the bundle adjustment is rerun.
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CHAPTER 3

SEGMENTATION

The objective of segmentation is to isolate the target data for the further processing of

modeling. Depended on the available information, different algorithms are used. When

no training data is available, clustering and grouping approach is the choice. With these

clustering approaches, we want to jointly utilize the 2D image and 3D geometry informa-

tion for segmentation. On the other hand, if training data is available, it is possible for us

to obtain some semantically meaningful segmentation. In this chapter, we first introduce

some algorithms and analysis for clustering and grouping in Section 3.1. Then, a joint 2D

and 3D segmentation is introduced in Section 3.2. In Section 3.3, we introduce a semantic

segmentation that can identify different kinds of object classes for building modeling.

3.1 Clustering and grouping

3.1.1 Affinity propagation

Introduction

Recently, Affinity Propagation (AP) [110, 111] has become one of the most powerful and

popular methods for unsupervised clustering. Since many promising results have been

found on various data sets and applications [111, 110, 112, 113, 114, 115, 116], great

attention rises in many fields of both scientific research and industry. However, most of

the following works focus on extension of AP [110, 111] to various kinds of applications,

while the updated rules for AP have not yet been theoretically justified. Very little work

has been done on understanding the reason why AP works, the relation with previous

methods, and the limitation of AP. In [111, 110], though an interpretation by factor

graph is provided, the procedure is still based on qualitative reasoning.

In this work, we take an early step to show the great similarity between AP and the

Expectation Maximization (EM) [117] for fixed-parameter Mixture Model (MM). With

side-by-side analysis, we found that the availabilities in AP have great similarity with the

component weights in Mixture Model, and the automatic determination of the number of

the clusters in AP imitates the estimation of the component weights for M-step in EM.

Our interpretation of the preferences in AP lends to the discovery that the exemplar of AP
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may not be the exemplar for itself, which means the objective function in [111] is actually

not the real one for AP. On the other hand, due to the major dissimilarity between AP and

MM-EM, i.e. the absence of a component weight term in responsibility update rules, AP

without damping suffers from vibration in every two iterations and does not converge.

Adding the term back lends to the normalized AP that empirically converges without

damping. Various experiments demonstrate and evaluate our observations and analysis.

Analysis

Review and notation Affinity Propagation (AP) takes as input a collection of real-

valued similarities between a set of d dimensional data point X = {x1, . . . ,xN}, where

the similarity Lik indicates how well the data point k is suited to be the exemplar for data

point i. Normally, we use a Gaussian likelihood

Lik = N (xi|xk,Σk) =
1

(2π)d/2 |Σk|1/2
exp

{
−1

2
(xi − xk)

T Σ−1
k (xi − xk)

}

where Σk = Σ for k = 1, . . . , N , and Σ is a fixed d × d covariance matrix set by users.

This likelihood function is suggested by sum-product AP in [110]. For the max-sum AP in

[111], since log probability is used to compute the responsibility as shown in Section 3.1.1,

the likelihood is defined as the exponent sik = −1
2
(xi − xk)

T Σ−1 (xi − xk), or degenerates

to negative Euclidean distance sik = −‖xi − xk‖2 as suggested in [111] when 1
2
Σ−1 = I.

Other kinds of similarity measure can also be used. As we will see in Section 3.1.1, in fact,

the similarity measure decides the probability density function of the models to be mixed.

In AP, the likelihood needs to be fixed beforehand by providing the similarity matrix

L = [Lik] (or equivalently S = [sik]). For Lkk, AP requests a special preference value

that influences the result number of clusters. To distinguish with Lkk = N (xk|xk,Σk),

we denote the preference values as L
′
kk, and define the ratio λk = L

′
kk/Lkk.

Side-by-side analysis As shown in Figure 3.1(a), let X = {x1, . . . ,xN} be the observed

random variables, and Z = {z1, . . . , zN} be the latent random variables. The great simi-

larity between AP and GMM-EM occurs when there are N components in GMM-EM, i.e.

the same as the number of observed variables, with mixing coefficients π = {π1, . . . , πN},
while the k-th Gaussian component has the mean at the position xk of the k-th data

point with the covariance matrices Σk. Both xk and Σk are fixed and known for the k-th

component, and πk is an unknown fixed point to be estimated. For such a GMM with
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Figure 3.1: Mixture model and component distribution profile.

fixed mean and covariance matrix,

p (x|π) =
N∑

k=1

πkp (x|zk = k) =
N∑

k=1

πkN (x|xk,Σk) ,

we can use the standard EM method [117].

E-step In EM, the E-step is to estimate the unobserved z, conditioned on the observa-

tion, using the values from the last M-step:

r̃ik = p
(
zi = k|xi, π

t
k

)
=

πt
kp (xi|zi = k)∑N

j=1 πt
jp (xi|zi = j)

=
πt

kLik∑N
j=1 πt

jLij

. (3.1)

In AP, this corresponds to the responsibility rik, sent from data point i to candidate

exemplar point k, reflects the accumulated evidence for how well-suited point k to serve

as the exemplar for point i, taking into account other potential exemplars for point i.

When i 6= k, the updated rule in sum-product AP [110] is:

rik =
Lik∑N

j=1,j 6=k aijLij

=
Lik∑N

j=1 aijLij − aikLik

, (3.2)

which is very similar with Eq. 3.1. (We will discuss the absence of component weight πt
k

in the numerator in Section 3.1.1, and exclusion of j = k in the sum in Section 3.1.1).

When i = k,

rkk =
L
′
kk∑N

j=1,j 6=k aijLij

=
λkLkk∑N

j=1,j 6=k aijLij

. (3.3)
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Note that λk is a factor in the numerator with the likelihood Lkk. Preserving the rel-

ative order, the max-sum updated rule in [111] is rik = sik − maxj 6=k {aij + sij} where

sik = log Lik + C for i 6= k, and skk = log L
′
kk + C for i = k. Here, C = log((2π)d/2 |Σ|1/2)

is a constant that will be canceled out by the subtraction. There are two major modifi-

cations from sum-product form [110] to max-sum form [111]: First, the product to sum

conversion transfers the computation from probability domain to log probability domain.

Hence, the likelihood becomes sik = −1
2
(xi − xk)

T Σ−1 (xi − xk). Second, the max op-

eration is to exaggerate the effect for the most likely exemplar and suppress the unlikely

ones. Therefore, the responsibility is more similar with k-means and k-centroids to give

harder assignment to each data point, while Mixture Model gives softer assignment. Note

that aij in rik = sik − maxj 6=k {aij + sij} should be log aij. However, since the relative

order between all aij is still preserved in all log aij, two versions of AP [110, 111] do not

distinguish them.

M-step In EM, the M-step is to maximize the expected log-likelihood of the joint event

with Lagrange multiplier. Since we have fixed mean and covariance matrix for GMM, the

updated rule is

πt+1
k =

1

N

N∑
i=1

p
(
zi = k|xi, π

t
k

)
=

1

N

N∑
i=1

r̃ik. (3.4)

In AP, the availability aik, sent from candidate exemplar point k to point i, reflects the

accumulated evidence for how appropriate it would be for point i to choose point k as its

exemplar, taking into account the support from other points that point k should be an

exemplar. When i 6= k, the updated rule in [111] is

aik = min

{
0, rkk +

N∑

j=1,j 6=i,j 6=k

max {0, rjk}
}

. (3.5)

The min and max operators are to truncate the cost in order to magnify the effect because

it is only necessary for a good exemplar to explain some data points well, regardless of how

poorly it explains other data points [111]. And this truncation is only used for max-sum

AP that operations with log-probability, and does not exist for sum-product AP [110]. If

we remove it (see Section 3.1.1 for the effect of the removal), the availability becomes

aik = rkk +
N∑

j=1,j 6=i,j 6=k

rjk =
N∑

j=1,j 6=i

rjk.
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The same as in the E-step, if we also consider i in the contribution of effort (see Section

3.1.1 for the effect of the exclusion), it becomes

a·k =
N∑

j=1

rjk, (3.6)

which turns out to be an unnormalized version of update rule for component weight πk of

EM in Eq. 3.4 (the normalization factor 1
N

will be discussed in Section 3.1.1.). Similarly,

when i = k, the updated rule akk =
∑N

j=1,j 6=k max {0, rjk} in [111] is an unnormalized and

truncated version of the update rule of EM in Eq. 3.4.

Normalization Comparing Eq. 3.6 and Eq. 3.4, the unnormalization will let at
·k ≈

Nπt
k. This issue will not cause any problem in EM since Eq. 3.1 will have a factor N in

both the numerator and denominator. In sum-product responsibility AP, the numerator

in Eq. 3.2 does not have the factor to cancel out N with the denominator. With this

N times larger at
·k, rt+1

ik will be N times smaller. And then at+1
·k =

∑N
j=1 rt+1

jk will be

back to the correct magnitude at+1
·k ≈ πt+1

k while rt+2
ik will also be at correct magnitude

rt+2
ik ≈ r̃t+2

ik . Now, once more, at+2
·k will be N times larger than πt+2

k , and vibration

continuous in every two iterations. For max-sum responsibility AP, the same situation

happens in every two iterations, but with more complex relation, since the log-probability

is used for responsibility while probability is used for availability. In Section 3.1.1, the

experiments to track the value for |at
ik| demonstrate our observation. The vibration is

in fact experimental observed in [110, 111]. However, it can not be well explained, and

hence a damping factor is introduced in [110, 111] to smooth the vibration between two

consecutive iterations. In sum-product responsibility AP, with the damping factor, the

vibration may converge into a situation when at
·k ≈

√
Nπt

k and rt
ik ≈ r̃t

ik/
√

N .

We modified AP to add aik as the first term of responsibility update rule for max-sum

AP (or in the numerator for sum-product AP), called normalized AP, shown as [+n Max-

sum AP] in Table 3.1.1, and get less vibration in two consecutive iterations with faster

convergence as shown in Section 3.1.1. Hence, we believe that, the major dissimilarity

between AP and GMM-EM, the absence of aik in the numerator of Eq. 3.2 and 3.3, is a

disadvantage of AP compared with GMM-EM.

As point out in [118], theoretical guarantees on the convergence or optimality of AP

are not yet established. However, in practice, AP usually converges to some reasonable

results [110, 111, 112, 113, 118, 114, 115]. Because of its great similarity with EM, we

believe that this is due to the convergence of EM. And because EM only converges to

local optimum, AP might also converge to local optimum.
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Availability and component weight Shown in Table 3.1.1, with some modifications

that we have discussed, AP has the exact same form as GMM-EM. In fact, the responsi-

bility of AP is directly borrowed from K-medoids, and hence should be very similar with

MM-EM as expected.

The novelty part of AP is to introduce the availability aik to reflect the accumulated

evidence for how appropriate it would be for point i to choose point k as its exemplar,

taking into account the support from other points that point k should be an exemplar.

This part is missing in the K-medoids method that inspires the original work. However,

this idea turns out to be another viewpoint of the M-step in EM to re-estimate the

component weight πk, while the updating procedure for the component weights can be

regarded as automatic determination for the number of clusters.

In EM, component weight π0
k is usually initialized to be 1. Although theoretically

we should impose the constraint
∑N

k=1 π0
k = 1, the first E-step of EM will scale π0

k down

uniformly. Hence, we do not need to explicitly normalize the initial π0. Correspondingly

in sum-product AP [110], aik is also initialized to be 1. For max-sum AP, as discussed in

3.1.1, aik in fact represents log aik. Hence, it is suggested to be initialized as log 1 = 0 in

[111]. On the other hand, as an acceleration scheme for implementation, when the weight

of particular component is close to zero, i.e. πk < ε or a·k < ε, it will never become large

again. Hence, we can safely prune that component without introducing any artifact.

Assignment identification In AP, for point i, the value of

ci = arg max
k
{aik + rik} (3.7)

either identifies point i as an exemplar if ci = i, or identifies the data point that is the

exemplar for point i. Since, aik + rik ≈
√

Nπk + r̃ik/
√

N for sum-product responsibility

AP,

ci ≈ arg max
k
{Nπk + r̃ik} .

In GMM-EM, directly based on r̃ik, the exemplar ci for point i is from

ci = arg max
k
{r̃ik} .

However, when r̃ik is large for some k, πk should also be large, and when r̃ik is small,

πk should also be small. Hence, the AP exemplar identification is similar with the one

in EM. Experiments in Section 3.1.1 shows that similar results are found with these two

kinds of assignment identification rules.
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Preference and objective function One of the strongest advantages of AP is that it

can automatically adjust the number of clusters, which is similar to adjust the component

weight πk in order to prune out some insignificant components. [110, 111] concludes that

the number of result clusters is controlled by L
′
kk. This is because that AP requires to

specifically scale Lkk = p (xk|zk = k) by the factor λk in Eq. 3.3 through the setting

of L
′
kk. In [111], the preference L

′
kk is suggested to be empirically set as the median

of the input similarities (resulting in a moderate number of clusters) or their minimum

(resulting in a small number of clusters). Therefore, L
′
kk is set to satisfying λk =

L
′
kk

Lkk
< 1.

By explicitly pulling down the value Lkk = p (xk|zk = k), the responsibility rkk is smaller

than it should be. Hence, the k-th component with mean at data point k needs more

support from other data points in order to have a significant weight (availability). By

tuning L
′
kk or λk, the number of clusters can be controlled. More systematically, we can

view this modification as to let the Gaussian distribution have an infinitesimal-width gap

at the mean as in Figure 3.1(b). However, AP does not use this profile as in Figure 3.1(b),

but recognizes the point index. Therefore, if two points are at the same position, it is

highly possible to let them be the exemplars of each other.

Conversely, in the supporting material for [111], during the derivation of AP as the

max-sum algorithm in a factor graph, AP is stated to maximize the objective function

O (c) =
N∑

i=1

sici
+

N∑

k=1

δk (c) (3.8)

where c = (c1, c2, . . . , cN) and δk (c) = −∞ if ck 6= k but ∃i: ci = k. Hence, every

exemplar should be the exemplar of itself. Otherwise, the value for the objective function

is −∞. This objective function directly conflicts with our analysis. In Section 3.1.1,

three examples report that some exemplars are not the exemplar of themselves. Hence,

conflicted with the arguments in [111, 113], we conclude that the objective function in Eq.

3.8 is actually not the one for AP to optimize, and AP cannot guarantee δk (c) 6= −∞
with the result extraction rule ci = arg maxk {aik + rik} from [111].

Limitation and extensions With the above analysis, one key limitation of AP is that

the parameters for the parametric models used for mixing, such as mean and covariance

matrix in Gaussian case, should be fixed and known. Since there are the same number

of components with data points, fixing the mean for each component is a reasonable

assumption, but fixing the covariance matrix is not. In EM, this is handled in the M-step

to re-estimate the covariance matrix for the k-th component. Correspondingly in AP,

with rt
ik ∝ r̃t

ik, we can have Σt+1
k =

∑N
i=1 rt

ik (xi − xk) (xi − xk)
T /

∑N
i=1 rt

ik.
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(a) Normalized AP
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Figure 3.2: Vibration and normalization. AP without damping cannot produce clus-

tering result by the original implementation[8]. And normalized AP does not need any

damping factor in order to converge. Refer to [+n Max-sum AP] in Table 3.1.1 for update

rules of normalized AP.
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Figure 3.3: Component assignment identification. (a) and (b) are the original max–

sum AP with damping factor=0.5, (c) is the normalized max-sum AP without damping.

The assignment identification rules are shown as subfigure title.
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Empirical Study

Differences between AP and GMM-EM In these experiments, 200 2D random

points in [0, 1] × [0, 1] are generated uniformly. And we empirically evaluate several

differences between AP an GMM-EM that we have discussed. Various message update

rules are listed in Table 3.1.1.

Normalization Discussed in Section 3.1.1, the major difference between AP and MM-

EM is the normalization issue. Experimentally, shown in Figure 3.1.1, we trace the mean

of absolute availabilities in 100 iterations.

Assignment identification In Section 3.1.1, we compare two assignment identification

rules: ci = arg maxk {aik + rik} and ci = arg maxk {rik}. Experimentally, shown in Figure

3.1.1, we use these two rules on max-sum AP. Furthermore, we use ci = arg maxk {rik}
for normalized AP ([+n Max-sum AP] in Table 3.1.1). We can see that the clustering

results from both max-sum AP with ci = arg maxk {aik + rik} and normalized AP with

ci = arg maxk {rik} are quite similar.

Exclusion and truncation During the analysis in Section 3.1.1, we suspect that the

exclusion of target points in the message and the truncation with 0 does not matter much

for AP. One example is given in Figure 3.1.1 where similar results are obtained, while

exclusion and truncation are disabled respectively.

Objective function and hard constraint assignment We use several toy examples

to verify our conclusion in Section 3.1.1 that AP cannot always guarantee each exemplar

to be the exemplar of itself. Note that we exactly follow the paper in [111] to identify

the exemplar by ci = arg maxk {aik + rik}, since the implementation provided in [8] may

have some other procedures to guarantee the hard assignment.

Example 1 There are three data points in this example. We use the ultra-short Mat-

lab script for max-sum AP from [8] and the support material for [111], and let max-

sum AP to run 10000 iterations. In Matlab, we use “[value,idx] = max(E,[ ],2)” for ci =

arg maxk {aik + rik} instead of “I=find(diag(E) > 0); K=length(I); [tmp c]=max(S(:,I),[ ],2);

c(I)=1:K; idx=I(c);” provided by [8] to extract results. We use non-metric distance that

AP claimed to support in [112, 111, 110]. The similarity matrix S used for computation

and the result extraction matrix E = A + R are
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S =




0 −3 −3
−1 −2 −3
−3 −1 −2


 , E =




3 −3 −3
0 0 −2
−1 0 0


 .

Therefore, the exemplar for point 1,2,3 is 1,1,2, i.e. the exemplar for point 2 is point 1

while point 2 is the exemplar of point 3. Hence, δk (c) = −∞ in the objective function.

Note that, since e21 = e22 and e32 = e33 , it would be equally good to let the exemplar

of point 2 be point 1 or point 2, and exemplar of point 3 be point 2 or point 3. In fact,

these equivalent good assignment configurations for E have different
∑N

i=1 sici
. However,

AP cannot identify the best configuration c among them with maximal
∑N

i=1 sici
and

constraint δk (c) 6= −∞ .

Example 2 In this example, we randomly generates two 2D points and duplicate them

to obtain four points. Using negative Euclidean distance, max-sum AP with 100 iterations

and ci = arg maxk {aik + rik} (when there is more than one maxima, we prefer k 6= i to

be ci), we obtain the exemplar of point 1,2,3,4 are 1,4,1,2 respectively, in cases such as

when

S =




−0.0323 −0.0646 0 −0.0646
−0.0646 −0.0323 −0.0646 0

0 −0.0646 −0.0323 −0.0646
−0.0646 0 −0.0646 −0.0323


 .

Example 3 In this example, the input has only 2 points. The similarities are −1

between different data points, and the preferences are −1.000001 for both data points.

We fix 20 iterations of message passing since there are only 2 data points. For max-sum

AP [8] with damping factor = 0.5, the exemplar of point 1 is point 2, and the exemplar of

point 2 is point 1. The implementation in [8] adds noises to S. However, the same result

exemplar assignment is obtained either with or without noises.

Discussions

Given the great similarity between Affinity Propagation (AP) and Expectation Maxi-

mization for fixed-parameter Mixture Model (MM-EM), we believe that AP and MM-EM

may be two special cases for the same more general method, or AP can be regarded as

a modified variation of MM-EM. As future work, it would be useful to systematically

compare different update rules in Table 3.1.1 on various data sets by a third party, and

consider a generalization beyond AP and MM-EM.
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Figure 3.4: Exclusion and truncation. The corresponding update rules are shown in

Table 3.1.1.

3.1.2 Hierarchical sparse affinity propagation

Affinity propagation on a sparse graph, called sparse affinity propagation, is more efficient

as pointed in [111]. The implementation is similar to the description in Subsection 3.1.1

except that the responsibilities and availabilities are only updated on the connected edges.

Then sparse affinity propagation runs in O(T |E|) time with T the number of the iterations

and |E| the number of the edges. In our sparse graph, the time complexity is O(Tn) since

|E| = O(n).

We observed, however, according to the original sparse implementation in [111], the

number of the data points that have the same exemplar i is at most degree(i), where

degree(i) is the number of nodes connecting i. This is because point i, the exemplar

for point k, must directly connect point k according to Equation 3.7 and the number of

the points that connect point i is degree(i). This will result in unexpectedly too many

fragments as shown Figure 3.5(b).

To handle this problem, we propose a hierarchical sparse affinity propagation method.

After obtaining the exemplars on the original sparse graph, we run again sparse affinity

propagation on the exemplars by constructing a sparse graph on the exemplars and con-

necting the exemplars ci and cj if the point with its exemplar ci is connected with at least

one point whose exemplar is cj. Then we can rerun sparse affinity propagation on the

new exemplars until obtaining satisfactory results. Compared with the spectral clustering

approach in [119], the hierarchical sparse affinity propagation is more efficient, running

in O(TLn) with T the number of the iterations and L the number of the hierarchies, and

more effective. One example is shown in Figure 3.5.
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(a) Connected components (b) Level 1

(c) Level 5 (d) Level 8

(e) Level 11 (f) Level 14

(g) Level 17 (h) Results

Figure 3.5: Demonstration of hierarchical sparse affinity propagation. (a) shows

the connected components on the initial k-NN graph. (b)-(g) show the result of hier-

archical sparse affinity propagation at different levels of iterations. (h) shows the final

result.
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Figure 3.6: Illustration of semi-supervised contraction. np and nq are candidate

exemplars. The data points, ni, nj, nl, nk, are internally connected if they are neigh-

bors, and are directly connected with the two candidate exemplars. np or nq attracts

competitively the data points in the semi-supervised AP algorithm.

3.1.3 Semi-supervised contraction

The original affinity propagation is an unsupervised clustering method. To utilize the

partially labeled nodes, an efficient and effective semi-supervised affinity propagation

method is proposed.

First, we group the nodes np1, np2, · · · that have the same known label, and contract

these nodes into a single new node np. Similarly, nq1, nq2, · · · are contracted into a single

node nq. A toy example is shown in Figure 3.1.3. And we set the preferences of the

contracted nodes to zero, i.e. s (p, p) = s (q, q) = 0 (this is equivalent that the exponential

similarity is 1.).

Then, we update the new edges Ē based on the original edges E and consider the

similarities between all the remaining nodes ni /∈ np ∪nq and the contracted nodes np, nq.

We connect ni /∈ np ∪ nq and np, nq, and cut all the edges between the nodes in np, nq.

We set the similarities on the connected edges Ē as follows.

1. For the similarity on (ni, nj) ∈ Ē if ni /∈ np ∪ nq, nj /∈ np ∪ nq and (ni, nj) ∈ E , we

just copy the similarity from the original weighted graph.

2. Considering the similarity on (ni, nt) ∈ Ē if pt ∈ nt and at least one pt such that

(ni, pt) ∈ E , nt ∈ {np, nq}, we set it as the largest similarity between node nt and

any node pt ∈ nt as s(i, t) = maxpt∈nt s(i, pt).

3. For edge (ni, nt) ∈ Ē if there is no point pt ∈ nt such that (ni, pt) ∈ E), we use
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the distance of the shortest path between ni and nt to estimate their similarity

s(i, t) = maxpathi,t

∑
(j,k)∈pathi,t

s(j, k).

Finally, when the algorithm converged, availabilities and responsibilities are combined

to identify exemplars. For point i, its corresponding label is obtained as

k∗ = arg maxk∈{p,q}{a(i, k) + r(i, k)}. (3.9)

Here, we perform the exemplar assignment only from the labeled point set to obtain semi-

supervised contraction, which is slightly different from Equation 3.7. One demonstration

is shown in Figure 3.8. Note that the algorithm can be easily generalized to more than

two exemplars.

The semi-supervised affinity propagation propagates the message on the sparse graph

by setting only the labeled nodes as candidate exemplars. It can converge in O(Tn)

time. Related discrete algorithms, such as iterated conditional mode, graph cuts, belief

propagation, tree-reweighted message passing can also solve this problem [120] in more

time complexity, and other relaxation algorithms, such as label propagation [121], may

not obtain good performance.

3.2 Joint 2D and 3D segmentation

Structure from motion takes an image sequence of a rigid (or static) object as the input

and recovers the camera poses and a cloud of 3D points. After many years of continuous

research, nowadays, the structure from motion algorithm, such as [122], can robustly and

accurately recover hundreds of thousands of points and all camera poses.

The reconstructed 3D points, however, are unstructured in space, therefore are not

yet sufficient for creating a geometric model of the underlying objects. To structure the

available 3D points and registered 2D images, recent researches [9, 119] show that a joint

segmentation of the reconstructed 3D points and the multiple 2D images is fundamental

for the subsequent modeling applications. Obviously, the concept of object is subjective,

and learning from the user assisted 2D image segmentation gives the object segmentation

more useful information. Hence, we wish to segment 3D points and 2D images into groups,

where each group represents a distinct object. This segmentation can be regarded as a

post-processing step of structure from motion, which provides semantic organizations of

the recovered 3D points. And this is very useful for the subsequent 3D modeling of the

scene.

The segmentation can be performed individually on the 3D points or 2D images.

The 3D points, without considering the 2D images, is a little like the range data. The
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segmentation is usually based on local geometric characterizations, which is insufficient

to obtain semantic segmentation. On the other hand, segmenting 2D natural images is a

well-studied topic, and many successful methods, such as [123, 124], were proposed. It is

a choice to individually segment each image of the multiple view sequence. For example,

a pure 2D segmentation approach to reconstruct small-leaf trees is proposed in [125].

However, it definitely misses very rich 3D information or 2D correspondence information,

and hence can not obtain satisfactory results on large objects with more complex color,

texture and shape information.

Some methods were proposed to utilize the motion information for multiple image

segmentation. The layered approaches originated from [126] usually do not directly adopt

3D reconstruction information. In [127, 128], motion estimation and segmentation on

the extracted correspondences between frames are performed, and then layer assignment

(i.e. pixel label) is obtained through propagating the labels of the corresponding pix-

els. In [129], the joint inference of motion estimation and labeling is solved using the

Expectation Maximization algorithm.

The modern stereo matching framework, such as [130], is very similar to the layered

approach, and it in essence discretizes the 3D space into a few layers. Bilayer segmentation

of binocular stereo video in [131], a simplest layered representation, probabilistically fused

the stereo cues and learned appearance model to separate the figure from the background.

3.2.1 Graph-based formulation

Let I = {Ii} be the set of n images with i = 1, . . . , n. Each image Ii is represented

by a set of regions, i.e. Ii = {(uk, Pk)} with k up to the number set by the visible

projections of the quasi-dense points in this view, and uk is the projection coordinate in

2D image space and Pk is the corresponding patch. It is assumed that all the images are

fully calibrated with respect to a common coordinate frame. We define a joint point x

to be a vector composed of the 3D coordinates (x, y, z) of a point in space and all its

corresponding patches Pi in all images, i.e. x = ((x, y, z), (u1, P1), · · · , (un, Pn)), where

each projection satisfies ui = Pi(x, y, z, 1)T for the projection matrix Pi of the i-th camera.

The correspondence information is encoded in the joint point representation. And each

joint point x is associated with an n-dimensional visibility vector v with binary values

to indicate that ui is visible in the i-th image if the i-th component is 1, and invisible

otherwise. A segmentation is a set of labels L = {lk}, and each of them lk assigns a set of

joint points to a common group. Here X = {xj} is the given set of joint points, V = {vj}
is the given set of visibilities, and X and V are given by the quasi-dense reconstruction

in our case. We now want to get the inference of L, given X, V and I. Similar to [119],
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we define a weighted graph G = (V , E) with joint points as nodes, in which edge weights

denote a local similarity measure between the two joint points in the graph G. Different

from [119], we generalize the joint point from a pixel level to a region (superpixel) level

to help the definition of the joint similarities.

The set of edges E is constructed using the k-Nearest Neighbor (k-NN) technique.

To guarantee that the joint points i and j, (i, j) ∈ E, must be both visible at least in

one view, each view is associated with a set of joint points that are visible in this view.

We then build for each view a k-NN network on the corresponding set of joint points

according to the 3D Euclidean distance. Finally, we combine those networks together to

reach a graph on the entire joint points.

3.2.2 Joint similarity

The joint use of 3D and 2D information for better segmentation, since all our images and

3D data are perfectly registered, is discovered by [9, 119]. All these useful information is

encoded in the weights on the edge. For similar nodes, similar labels should be selected

for them. Therefore, a similarity is defined on each edge to characterize the smoothness

of the labels. The quality of segmentation fundamentally depends on the similarity, and

hence we seek to define it jointly from both 3D and 2D features.

3D similarity The points that are closer in space tend to have a higher probability

belonging to the same group, i.e. the distance between the points of the same group is

smaller than that of the points in different groups. We naturally take this spatial distance

as a similarity measure s3d(i, j) = − ||pi−pj ||2
2σ2

3d
, where σ2

3d is the expectation E(||pi − pj||2)
and p = [x y z]T . In addition to the 3D Euclidean distance, the normal directions are also

important for shape smoothness. We incorporate the difference between normal directions

into the similarity and define s3n(i, j) = − ||ni−nj ||2
2σ2

3n
, where nj is the normal direction vector

of point j, approximately estimated from its neighbor points, and σ2
3n is the expectation

E(||ni − nj||2). The final 3D similarity is given by s3(i, j) = s3d(i, j) + s3n(i, j).

2D color similarity Since a joint point x is associated with the image colors, we

can define a similarity function encoding the color differences as sc(i, j) = − ||E(ci)−E(cj)||2
2σ2

c
,

where σ2
c = E(||E(ci)−E(cj)||2), and E(c) = 1

|v|1
∑n

i=1 ci. This color consistency between

joint points is intuitively estimated using their average colors, since different points may

have different numbers of visible color features. Averaging the colors leads to a more
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stable solution. However, this similarity function only makes sense between the objects

with apparent different colors.

In case of apparent similar colors, image contour features, similar to [132], should be

incorporated into the similarity. It is assumed at present that each pixel u in view Iv is

associated with a response gv(u) to show the degree of the pixel lying on a contour point.

The endpoints of the edge (i, j) must both be visible at least in one view, meaning that

the line segment [i, j] must correspond to a line segment visible in the same view. We can

use the following similarity measurement

sic(i, j) = −medv{maxtv∈[i,j]v gv(tv)}
2σ2

ic

,

where the inner term maxtv∈[i,j]v gv(tv) finds the maximum contour response along the

projected line segment [i, j]v in view v, the outer term medv{·} tries to seek the median

contour response in all possible views, and σic is the variance of the median contour

responses of all line segments. The response gv(u) is calculated from an edge map obtained

by the similar orientation filter bank used in [132, 119].

Patch histogram similarity To utilize texture similarity, we express each patch vector

in term of multi-resolution histograms [133]. That is, for each joint point, we collect all its

patches {P1, . . . , Pk} remained after filtering, and then build an average color histogram

h0. Without losing the spatial information, we further downsample the patches t−1 times

and compute several normalized color histograms h1, . . . , ht−1. Hence, a joint point now

corresponds to a vector of histograms h = [h0, h1, . . . , ht−1].

In this way, for any two joint points i and j, with the histogram representations hi

and hj, their patch similarity is defined as

st(i, j) = −d(hi, hj) = −1
t

∑t−1

k=0
d(hi

k, h
j
k),

where d (·, ·) is the dissimilarity measures for histograms. Here, we choose the Kullback-

Leibler divergence.

Finally, we are able to perform a simple addition of the similarities to define the joint

similarity to be

s(i, j) = s3(i, j) + sc(i, j) + sic(i, j) + st(i, j).

3.2.3 Interactive segmentation

The concept of segmentation is obviously subjective. Hence, some user assistant infor-

mation will greatly improve the segmentation. In recent years, interactive 2D image
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(a) Strokes (b) Trimap (c) 3D projection

Figure 3.7: User assistance. (a) shows the strokes scribbled by the user. (b) shows the

segmentation result in a trimap representation by our semi-supervised AP method. In (c),

the 3D projections inside and outside the white-bounded region are assigned to different

hard labels, and are used to propagate the labels into the other joint points invisible in

this view using our semi-supervised AP method.

matting [134] is very successful, and a semantic segmentation was induced from a train-

ing example in [135]. Here, we use a similar way to allow the user conceptually group

different objects in some 2D images. To specify an object, the user marks a few lines on

the images by dragging the mouse cursor while pushing down a button. An example of

our user-interface is shown in Figure 3.7(a), where different objects are marked by strokes

with different colors.

We can segment 2D images using the semi-supervised contraction method, which is

discussed in Subsection 3.1.3. We want to make use of these strokes and segmentation

information to help segment the other views. This is more practical since we always

have about 30 views and the user may not want to draw strokes on every view. Here,

we make the assumption that all the surfaces in the scene are Lambertian. Under this

assumption, the appearance models of all objects are roughly the same in all views. Hence,

for the joint points with visible projections on this segmented 2D image, we directly set

their labels the same as their projection’s labels respectively, which can be obtained from

segmented images. To handle the ambiguity of the projections near the boundary, such as

the projections in the white area in Figure 3.7(c), we regard the joint points corresponding

to them as unlabeled joint points.

3.2.4 Experiments

Before performing our approach, we first run the connected component algorithm to

extract connected components. One example is shown in Figure 3.5(a). In addition,

before patch filtering, we run the bilateral filtering method to smooth all 2D images while

keeping the edges.
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(a) Selected group (b) 2D projections

(c) Projection segmentation (d) 3D segmentation

Figure 3.8: Demonstration of semi-supervised contraction. (a) shows the selected

cluster to be split. (b) shows the 2D projections visible on one view. (c) shows the

separation of the visible 2D projections assisted by the user. (d) shows the clustering

result on the selected group.

In Figure 3.9, we first draw four strokes in one view shown in Figure 3.9(a) to indicate

that the scene consists of four major components: the tree, the desk, the ground and

the wall. Then we learn the appearance models for each of the four components, respec-

tively, and run the semi-supervised contraction on the 2D images to obtain 2D coarse

segmentation and 3D segmentation as shown in Figure 3.9(b) by checking their projec-

tions. Thirdly, we run our hierarchical sparse affinity propagation and semi-supervised

affinity propagation to obtain the grouping results on each component, and the final 3D

segmentation and 2D segmentation results are shown in Figures 3.9(c) and 3.9(d) re-

spectively. And in Figure 3.2.4 shows another example using the similar process. In all

our experiments, without code optimization, the hierarchical sparse affinity propagation

takes one to three minutes at lower levels and becomes real-time at higher levels, while the

semi-supervised affinity propagation always provides results on the fly, which is suitable

for user interaction.
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(a) Strokes (b) 3D coarse segmentation

(c) Final 3D segmentation (d) Final 2D segmentation

Figure 3.9: Segmentation results for the office scene. (a) shows the user assistance

in one view to indicate the four components of the scene, and the 3D segmentation

result is shown in (b) by utilizing the user assistance and our semi-supervised contraction

algorithm. (c) shows the final 3D segmentation result using our hierarchical sparse and

semi-supervised affinity propagation. (d) shows the corresponding 2D segmentation result.

As an application mentioned above, 3D modeling can benefit from satisfactory multi-

ple view segmentation. A modeling example is shown in Figure 3.11. After we perform the

proposed approach to obtain both 3D and 2D segmentation as shown in Figures 3.11(a)

and 3.11(c), we can build the 3D surface and appearance models using the similar tech-

nique in [9]. The rendering result is shown in Figure 3.11(d).

Given both 2D images and 3D points reconstructed from those images, we proposed a

joint segmentation approach to simultaneously segment 2D images and cluster 3D points.

Efficient and effective hierarchical sparse and semi-supervised affinity propagation algo-

rithms make the joint segmentation more practical. The results have demonstrated the

powerfulness. Future work includes further study of the affects of different affinities.

61



(a) Coarse 3D segmentation (b) Final 3D segmentation (c) Final 2D segmentation

Figure 3.10: Segmentation results for the terra-cotta warriors scene. (a) shows the

initial result using user assistance. (b) shows the final 3D segmentation result using our

hierarchical sparse and semi-supervised affinity propagation. (c) shows the corresponding

2D segmentation result.

(a) 3D groups (b) Group projection (c) 2D leaves segmentation (d) Rendering result

Figure 3.11: Segmentation results for the Nephthytis scene. To be clear, this

example only shows the segmentation results on the leaves. (a) shows the grouping result

on 3D space, (b) shows the projections of the groups, (c) shows the image segmentation

result, and in addition (d) shows the 3D modeling example by using the techniques in [9]

based on our multiple view segmentation result.

(a) 3 of the 24 Input Images (b) 2D Segmentation Result

(c) Reconstructed 3D Point Cloud with Camera
Matrix

(d) 3D Segmentation Result

Figure 3.12: Segmentation results for the sofa scene.
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(a) 3D groups (b) Group projection (c) 2D leaves segmentation (d) Rendering result

Figure 3.13: Segmentation results for the Poinsettia scene. To be clear, this exam-

ple only shows the segmentation result on the leaves. (a) shows the grouping result on 3D

space, (b) shows the projections of the groups, (c) shows the images segmentation results,

and in addition (d) shows the 3D modeling application of multiple view segmentation,

the rendering result.

3.3 Semantic segmentation

3.3.1 Introduction

Understanding the semantic content of images is a fundamental and challenging problem

in computer vision. In this work [136], we are especially interested in simultaneously

learning object class models and performing segmentation on multi-view images captured

along streets in outdoor environments. This problem has many potential applications,

such as to automatic vehicles in the DARPA Urban Challenge, extensions to earth maps,

and city modeling [64, 137].

Related works

In recent years, many methods have been proposed for simultaneous single-view multi-

class object classification and segmentation, such as [138, 139, 140, 141, 142, 143, 144, 145].

In our setting, we have multi-view images of the same scene to improve the performance.

For object recognition tasks, several multi-view systems have been proposed such as

[146, 147, 148, 4, 149]. In these methods, either multi-view or 3D information is utilized

during training. However, all of these methods focus on single view recognition during

testing, while our problem is to recognize and segment multiple views during both training

and testing.

[150] proposed a system making use of multi-view information during testing for

instance-level retrieval. However, they focus on distributed systems in which the com-

putation power and transmission bandwidth are limited. [151] proposed a joint affinity

propagation method for both automatic segmentation and interactive refinement. Al-
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though multi-view information is used, this clustering-based approach cannot infer se-

mantic meaning for object classes.

The most related work is probably [152], where Brostow et al. proposed to utilize 3D

information for street image segmentation. Compared with [152], our approach differs in

the following aspects. First, we propose a graph-based optimization approach to enforce

consistency of the segmentation result across multiple views. Second, we adaptively select

the training data from a large label pool. Furthermore, we propose a simple yet powerful

approach for data labeling tasks, while [152] releases a high-quality labeled data set.

Our approach works on practical data collected by Google Street View without human

intervention. The data are very noisy and have strong glare. Posner et al. [153] also

worked on similar problems although using range data.

Overview

We propose a multi-view semantic segmentation framework for images captured by a cam-

era mounted on a car driving along the street. In Section 3.3.2, we illustrate how to set

up the image capturing system. The pixel correspondences are then obtained across mul-

tiple views. Structure from Motion is used to reconstruct the scene geometry and prune

incorrect correspondences. With both 2D and 3D information available, in Section 3.3.3,

we lay out a Markov Random Field (MRF) across multiple images. Nodes in MRF repre-

sent superpixels from images, while edges represent smoothness across either neighboring

superpixels in the same images or from different images linked by pixel correspondences.

Section 3.3.3 gives the definition of the unary data term, while Section 3.3.3 defines the

smoothness term. To improve performance by scene alignment, Section 3.3.3 illustrates

the organization of the label pool to ease similar context and learning transference. In

Section 3.3.4, we propose a approach to enable labeling of many images at the same time

using the available geometry and color information. Finally, we demonstrate our approach

in Section 3.3.5.

3.3.2 Preprocessing

We use a camera that usually faces the building façade and moves laterally along streets.

The camera should be preferably held straight and the neighboring two views should have

sufficient overlapping. The top view of the camera motion is illustrated in Figure 3.14.

With the captured images, we first compute pixel-to-pixel correspondences between two

adjacent images using a robust uncalibrated matching algorithm [154, 155]. Taking an

image in sequence as a bridge, we can obtain feature tracks of three neighboring views
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buildingbuilding

street

car

camera

camera mounted on a car

Figure 3.14: Top view of the camera motion. The car drives along the street and

makes a 90-degree turn at the corner. Therefore, we break the sequence down into two

different sequences, denoted in red and blue at the turn.

for projective reconstruction. We merge all the triplets by estimating the transformation

between those with two common images [151, 4] and metrically upgrade to Euclidian

space. In each step, bundle adjustment is used to minimize the geometric errors, and

feature tracks are merged and linked to cover more views.

Figure 3.3.2 shows an example of feature tracks across multiple view images and

corresponding 3D reconstruction. We not only recover a set of 3D points representing

the scene, but also all camera poses and parameters. We denote a feature track as t =

〈x, (xi, yi, i) , (xj, yj, j) , . . . 〉, where x = (x, y, z) is the coordinate for the corresponding

3D point, and (xi, yi, i) is the 2D projection (xi, yi) on the i-th image, Ii.

We work on sequences with about 100 images and break down at the turn in the

driving path as exemplified in Figure 3.14. To ease the description of the 3D geometry,

the right-hand coordinate system is rotated to align with the average down vector of all

reconstructed cameras to be in the y direction, and the camera path is roughly on the x

axis, while the orientations of the cameras are roughly the same as the +z direction. To

improve the segmentation accuracy and speed up the process, we over-segment [156, 157]

each input image, Ii, into about 200 superpixels {pj}.

3.3.3 Multi-view semantic segmentation

Since street view data usually contain multiple images, we define a Markov Random Field

for the entire sequence to improve the segmentation consistency across different views.

For each image, Ii, we build a graph, Gi = 〈Vi, Ei〉, on the over-segmentation results. Each

vertex, p ∈ Vi, in the graph is one superpixel in the over-segmentation, while the edges, Ei,

denote the neighboring relationship between superpixels. The graphs {Gi} from multiple

images in the same sequence are merged into a large graph, G = 〈V , E〉, by adding the

edges between two superpixels in correspondence across different views. The superpixels,
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(a) Tracks across multiple views. (b) Superpixel segmentation.

(c) 3D reconstruction by Structure from Motion. The x, y and z axes are indicated in red, green and blue, respectively.

Figure 3.15: Preprocessing.

pi and pj, from images Ii and Ij are in correspondence if and only if there is at least

one feature track, t = 〈x, (xi, yi, i) , (xj, yj, j) , . . . 〉, with projection (xi, yi) lying inside

superpixel pi in image Ii, and projection (xj, yj) lying inside superpixel pj in image Ij. To

limit the graph size, there is at most only one edge, eij, between any superpixel, pi and

pj, in the final graph, G.

The labeling problem is to assign a unique label, li, to each node, pi ∈ V . The solution,

L = {li}, can be obtained by minimizing a Gibbs energy [158]

E (L) =
∑
pi∈V

ψi (li) + ρ
∑
eij∈E

ψij (li, lj) . (3.10)

Since the smoothness costs defined in Section 3.3.3 satisfy the metric requirement, after

the cost has been computed, GraphCut-based alpha expansion [159] can be used to obtain

a local optimized label configuration, L.

Unary potential

To define the unary potential function, ψi (·), we extract features for superpixels to train

discriminative classifiers.
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2D features For each superpixel, pi, we compute a 192-dimensional feature description

vector, fA
i , based on the 2D image-based appearance. Built on [160, 161, 162, 141], for

each superpixel, pi, the feature vector, fA
i , contains the median, deviation, skewness and

kurtosis statistics over the superpixel, pi, of the RGB and Lab color-space components, as

well as the texture features drawn from filter bank responses. The filter bank we used is

made of three Gaussians, four Laplacians of Gaussians and four first-order derivatives of

Gaussians. This filter bank has been shown to achieve good performance in [162] among

a number of different filter combinations of derivatives of Gaussians and Gabor kernels.

In addition, following [160], we compute the size and shape of each superpixel. The shape

features consist of the ratio of the region area to the perimeter square, the moment of

inertia about the center of the mass, and the ratio of the area to the bounding rectangle

area. As in [161], we also append to the description vector the average of the descriptor

over the neighbors for each superpixel weighted by the number of pixels for the neighbors.

(a) An example image

sky

ground

building
person

vehicle
tree
recycle bin

occurence

(b) Distribution

Figure 3.16: Pixel location statistics.

Because of the way we captured images, we can roughly learn the location for each

class of objects. For example, the sky is always in the upper part of the image, while the

ground is always in the lower part. Since our camera moves laterally along the street,

each pixel position at the same height in the image space should have the same chance

to be a specific class. To illustrate the idea, we compute the accumulated frequency of

different classes from all labeled data and plot the distribution in Figure 3.16. Based on

this observation, we only use the vertical position of the superpixel as the one-dimensional

feature vector, fP
i .

3D features We define the superpixel orientation and the 3D point density as our

geometric features, fG
i . We do not use the absolute height above the camera and the

absolute distance to the camera path as in [152], because an extra setup for the capturing

67



system to measure the absolute dimensions is needed. We also do not use the back

projection residual since it strongly depends on the implementation of Structure from

Motion.

(a) Superpixel (b) Density (c) Direction

Figure 3.17: An example of 3D geometric features.

Let Ti denote all tracks that have projection in pi, and let mi be the medians of

three components of all 3D points in Ti. For each superpixel, pi, the patch normal, ni, is

provided by the symmetric 3×3 positive semidefinite matrix,
∑

x∈Ti
(x−mi)⊗ (x−mi).

Among the eigenvectors, v1, v2 and v3, associated with the eigenvalues, λ1 ≥ λ2 ≥ λ3,

respectively, we choose ni to be either v3 or −v3. The sign is chosen to have a greater

than 180-degree angle between ni and the camera orientation. In the experiments, we

only estimate the normal direction for regions containing at least five 3D points. The

estimated normal direction, ni, is projected onto the yz-plane. The dot product of the

normalized unit projected vector and the −y direction is defined to be the orientation

descriptor. For diluted regions without sufficient points for normal estimation, we let

this feature value to be 0.5. This definition of the geometric features is very useful for

classification between the ground with normals roughly the same as −y, and other objects

such as buildings. For objects that are textureless, such as the sky, we use the density

|Ti| of the feature tracks to distinguish them.

The boosting classifier The collection of all feature descriptors are then whitened to

give a zero mean and unit covariance. We learn a series of one-vs-all AdaBoost classifiers

[163] for each class label l. Here, we take as positive examples the superpixels that

belong to that class in the ground-truth labeling and as negative examples all superpixels

with ground-truth labels of different classes. We apply the AdaBoost classifier that we

have learned for each class, l, to the descriptors. The estimated confidence value can be
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reinterpreted as a probability distribution using softmax transformation:

Pi

(
li|fA

i , fP
i , fG

i

)
=

exp
(
H

(
li, f

A
i , fP

i , fG
i

))
∑

l exp (H (l, fA
i , fP

i , fG
i ))

, (3.11)

where H
(
l, fA

i , fP
i , fG

i

)
is the output of the AdaBoost classifier for class l. We then define

the unary potential as ψi (li) = − log Pi

(
li|fA

i , fP
i , fG

i

)
.

Smoothness

For edge eij ∈ Ek in the same image, Ik, the smoothness cost is defined as

ψij (li, lj) = [li 6= lj] · g (i, j) , (3.12)

where

g (i, j) =
1

ζ ‖ci − cj‖2 + 1
(3.13)

and ‖ci − cj‖2 is the L2-Norm of the RGB color difference of two superpixels, pi and pj.

Note that [li 6= lj] allows us to capture the gradient information only along the segmen-

tation boundary. In other words, ψij is a penalty term when adjacent nodes are assigned

with different labels. The more similar the colors of the two nodes are, the larger ψij is,

and thus the less likely the edge is on the segmentation boundary.

For edge eij ∈ E across two images, the smoothness cost is defined as

ψij (li, lj) = [li 6= lj] · λ |Tij| g (i, j) (3.14)

where Tij = {t = 〈x, (xi, yi, i) , (xj, yj, j) , . . . 〉} is the set of all feature tracks with pro-

jection (xi, yi) lying inside the superpixel, pi, in image Ii, and projection (xj, yj) lying

inside the superpixel, pj, in image Ij. This definition encourages two superpixels with

more feature track connections to have the same semantic segmentation label, since the

cost to have different labels is high due to large |Tij|.

Adaptive training

For each testing sequence, we only select a subset of labeled images that are similar

with the input sequence as the training data for that sequence [164]. We define the

distance between two images as the distance between their respective Gist descriptors

[165]. The Gist descriptor is used because it has been shown to work well for retrieving

semantically and structurally similar scenes. We create a Gist descriptor for each image
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Sequence A
Sequence B

Sequence C

Figure 3.18: Affinity clustering in the label pool.

with 4 by 4 spatial resolution where each bin contains that image region’s average response

to Steerable filters at 4 scales with 8,8,4 and 4 orientations, respectively.

To speed up the training and prediction process, we cluster the labeled sequences in

the pool based on affinity. As shown in Figure 3.18, we regard each label sequence as

one node in a graph. The weight of the edge between each pair of sequences is defined

to be the minimal Gist distance between any image in a sequence and any image in

another sequence. Given this graph, we use Affinity Propagation [166] to cluster 40

labeled sequences into 7 clusters. We then learn 7 models respectively by first training

the AdaBoost classifier in Section 3.3.3, and learning ρ in Equation 3.10, ζ in Equation

3.13, and λ in Equation 3.14 by piecewise training [141].

Given a testing sequence, we can compute all the distances between the labeled images

and each image in the input sequence. We may define the distance between the testing

sequence and one cluster as the minimal Gist distance between any image in the testing

sequence and any image from the cluster. However, this process is very time consuming.

Therefore, we approximate by using the middle image in each sequence. In this way, we

only need to compute 40 distances between the Gist of the middle image in the testing

sequence, and the pre-computed Gist descriptors for images at the middle positions of the

40 labeled sequences. We find the most similar cluster for the testing sequence and use

the corresponding model for prediction.
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3.3.4 Large-scale labeling

(a) Labeling at the front view.

(b) Labeling at the top view.

Figure 3.19: Labeling in 3D. Color code: ¤ ground, ¤ building, ¤ vehicle, ¤ tree.

Labeling a sufficient number of examples is a fundamental requirement for any su-

pervised learning method. Many researchers in this field have proposed methods to ease

labeling tasks, such as LabelMe [167], ESP game [168] and Peekaboom [169]. However,

most of these methods tried to make the labeling become interesting and online to encour-

age people to do more labeling, while the efficiency has not yet been greatly addressed,

possibly due to the single image nature of these tasks. In our multiple view setting, it is

possible to enable large-scale labeling with little interaction. We first reconstruct the 3D

scene for each sequence with about 100 images, and let the user label the 3D points in the

3D space. Using labels of 3D points, we are able to segment the 2D images at the same

time. In this way, labeling once gives us about 100 labeled images. This significantly

improves the efficiency.

In detail, after the 3D scene is reconstructed, as shown in Figure 3.19, the user can

draw rectangular or polygonal regions to indicate the semantic meaning of the point
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(a) Strokes (b) Segment regions

P (c|MR)

P





c|MIk−R





(c) Info source likelihood

Figure 3.20: Labeling in 2D. Color code: ¥ sky, ¥ vehicle.

clouds. Note that the user may not want to, or may not be able to, identify and label

all 3D points. The task is to use these non-perfect labeled 3D points to segment multiple

view images. The same framework that we proposed previously can be naturally used in

our labeling task. In Equation 3.10, the same smoothness defined in Section 3.3.3 can also

be used since it involves no information gained from training data. The unary potential

is defined as follows.

First of all, a superpixel, pi, has a set, Ti, of 2D projections of 3D points inside the

superpixel region. The more points in Ti that are labeled, the more confidence we gain

about the label of the region. Therefore, we define

P 3D
i (li = l) ∝

∣∣T l ∩ Ti

∣∣ +

∣∣T unknown ∩ Ti

∣∣
n

, (3.15)

where T l = {t|t is a track labeled as class l by the user in 3D}, T unknown is the set of

feature tracks that have no label information from the user, and n is the total number of

all possible labels. This definition will put a uniform uncertainty on each class if there

are unlabeled 3D points with projections in the superpixel region. However, it cannot

characterize the projection density in each superpixel region. A superpixel region with

more labeled projections should have more influence on the neighboring regions. The

superpixel that has lower uncertainty should also contribute more. Therefore, we define

the unary potential to be

ψi (l) = −
∣∣Ti − T unknown

∣∣ + ε

H (Pi (·)) + ε
log Pi (l) , (3.16)

where
∣∣Ti − T unknown

∣∣ is the number of labeled feature tracks with projections in superpixel

pi, H (Pi (·)) is the entropy of the distribution Pi (·), and ε and ε are two small positive

values to avoid 0. Pi (l) is set to be P 3D
i (l).
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Ideally, this method works well to identify regions with sufficient texture. However, for

the classes lacking texture, such as the sky, where almost no 3D points are reconstructed,

it is impossible to label them in 3D. Therefore, we also provide mechanism to draw strokes

on one or more 2D images. When a superpixel in one image is covered by the strokes drawn

by the user to be class l, the corresponding unary potential is set to ψi (li = l) = −∞
and ψi (li 6= l) = +∞. By adding these hard constraints, together with the definition

of smoothness based on the color difference in Section 3.3.3, the labeling results can be

obtained by MRF optimization.

In the same city block, the color distributions across instances of the same class are

quite similar, while those across instances of different classes are always different. To

draw as few strokes as possible, we want to make use of the strokes in one image, Ik, to

segment the other images. To integrate this idea into our framework, for a superpixel,

pi, in an image, Ij, without strokes, we first distinguish whether the labeling information

of pi should come from 2D color or 3D points. Illustrated in Figure 3.20, we segment

some regions in image Ik with the strokes and compute the color statistics of the regions,

R, belonging to the same set of classes for the strokes. The color distribution of all

pixels in R is approximated by a Gaussian mixture model, MR, on the RGB color space.

Furthermore, the color distribution of all pixels in Ik − R is approximated by another

Gaussian mixture model MIk−R. For a superpixel, pi, in an image, Ij, without strokes, we

determine the likelihood that the label information of pi with mean color ci comes from

the 2D color from

P col
i (ci) =

P (ci|MR)

P (ci|MR) + P (ci|MIk−R)
. (3.17)

The probability is defined accordingly by

Pi (l) = P col
i (ci) P 2D

i (l) +
(
1− P col

i (ci)
)
P 3D

i (l) , (3.18)

where P 3D
i (l) is defined in Equation 3.15, and P 2D

i (l) is the color likelihood computed

from Gaussian mixture model of pixel colors in the stroke-covered regions of image Ik

that belong to class l. This definition is then used in Equation 3.16. If multiple views

are labeled with 2D strokes, we just put all the pixels from the multiple views together

to define MR and MI−R accordingly.

3.3.5 Experiments
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sky 94.6 - 5.1 - - - 0.1
ground - 97.6 1.0 - 1.1 0.1 0.2
building - 0.6 98.6 - 0.2 0.4 0.2
person - 6.6 85.0 8.3 - - -
vehicle - 15.5 3.8 1.6 78.7 0.2 0.2
tree 0.1 1.2 5.7 - 0.1 92.8 0.1

recycle bin - 6.1 25.7 - - - 68.1

Table 3.2: Accuracy of our approach to the evaluation data set in percentage.

This confusion matrix shows the pixel-wise recall accuracy for each class (rows) and is

row-normalized to sum to 100%. Row labels indicate the true classes and column labels

the predicted classes.
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Figure 3.21: Example Results. Color code: ¥ sky, ¥ ground, ¥ building, ¥ person, ¥
vehicle, ¥ tree, ¥ recycle bin.
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In our experiment, we use more than 10,000 images captured in the downtown of

Pittsburgh by Google Street View. We want to segment the images into seven classes:

sky, ground, building, person, vehicle, tree and recycle bin. All of our input images are

at 640 × 905 resolution. We train our models with a small computer cluster composed

of seven desktop PCs. Each sequence contains about 200,000 3D points. It takes about

2 days for training using all labeled sequences excluding over-segmentation. For testing,

each image takes 25.7 seconds on average in one desktop PC excluding over-segmentation.

We first manually label every image in one sequence. Then, we label this sequence in

the 3D space with a few strokes in 2D images and learn ρ in Equation 3.10, ζ in Equation

3.13, and λ in Equation 3.14 for large-scale labeling by piecewise training [141]. Now,

we use the large-scale labeling method to randomly label another 39 sequences. Together

with the previous one, we have totally 40 labeled sequences and 3,877 labeled images in

the label pool.

For performance evaluation, we manually label 320 images sampled uniformly from

the testing data set. The segmentation performance is measured as the global accuracy,

i.e., the total proportion of pixels that are correct. The global pixel-wise prediction

accuracy is 94.7% for the full model, 91.1% for the model from a random cluster (also

below), 83.3% for the model without cross-view consistency, 81.2% for the model without

smoothness, 75.4% for the model without 3D geometry features and smoothness, 69.9%

for 2D appearance features together with the AdaBoost classifiers. Some example results

predicted by the full model are shown in Figure 3.21. Note that there may be several

images between two adjacent images not shown due to space limits. The confusion matrix

of full model is presented in Table 3.2 for the pixel-wise recall accuracy per class.

We can see that the accuracy for the sky, ground, building and tree classes are very

high. However, for the person class, the results are unsatisfactory for several reasons.

First, objects like persons are difficult to reconstruct by Structure from Motion, since

they are dynamically deforming and unclear due to small pixel coverage, or there is a

large disparity due to the close proximity to the camera. There are very few 3D points

for these objects and it is difficult for the user to label them in 3D. Hence, very few of

our labeled data contains good labels of these objects. Second, these small objects are

not suitable for our super-pixel representation. The traditional sliding windows approach

can better encode the profile shape for such small objects.

This section tries to propose a consistent framework for multi-view segmentation.

Although it is beyond the scope of this thesis, we can easily incorporate existing detection

methods to handle these difficult classes. For example, in Figure 3.22, we use a state-

of-the-art model [170] to obtain a bounding box of the person. With our segmentation
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(a) Input Image (b) Our result (c) Detection [170] (d) Pruning

Figure 3.22: An example of person detection. Color code: ¥ ground, ¥ building, ¤
person, ¤ parts of body.

results for background objects, such as buildings and the ground, we can naturally put

the boxes in perspective [171, 172] in order to prune incorrect predictions. For example,

a person must stand on the ground and has a head usually at the pixel-position of the

building. Finally, we can obtain the silhouette from the bounding box by methods such

as GrabCut [173] or Active Contours.

In this section, we propose a multiple view framework for semantic object segmen-

tation and demonstrate our approach on large-scale data sets from Google Street View

images. Interesting future work will consider real-time implementation for prediction,

better handling of small objects such as the illustration in Section 3.3.5, and extend the

method to more general contexts beyond Street View.
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CHAPTER 4

MODELING

Given the segmented 3D point cloud and 2D images, we are ready to produce the mesh

model. The first thing that we need to decide is how to represent a façade of building. In

Section 4.1, we propose a 2.5D representation for a façade, i.e., we represent a façade as

a 2D depth map on the orthographic view. In Section 4.2, we discuss about how to

analyze the structure of the façade. For example, how to detect the geometric elements

embedded on the façade, such as windows. In Section 4.3, we discuss about how to

compute a regular boundary for each façade. When the embedded geometric elements

and boundaries are determined, the shape for the façade is fully recovered. In Section

4.4, the texture mapping methods of this shape is discussed. Finally, in Section 4.5, we

provide some convenient way to interactively edit the result if needed.

4.1 Representation

The reconstructed 3D points are often noisy or missing due to varying textureness as well

as matching and reconstruction errors. Therefore, we introduce a building regularization

method in the orthographic view of the façade for structure analysis and modeling. Or-

thographic depth map and texture image are composed from multiple views in Section

4.1.1, and provide the working image space for later stages. In this way, we are able

to transfer the reconstructed 3D information and segmentation information onto this 2D

orthographic view. In Section 4.1.2, we discuss about the data structure of this 2.5D

representation.

4.1.1 Inverse orthographic composition

Now we want to represent each façade as a relief depth field on the orthographic view. The

question we addressed is how to compose all data from images domain to this orthographic

view. First of all, each input image of the building block is over-segmented into patches

using [174]. The patch size is a trade-off between accuracy and robustness. For example,

we can choose 700 pixels as the minimum patch size if the input images have a resolution

of 640 × 905 pixels, to favor relatively large patches since the reconstructed 3D points

from images are noise.
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Algorithm 2 Inverse Orthographic Patching

1: for each image Ik visible to the façade do
2: for each super pixel pi ∈ Ik do
3: if normal direction of pi parallel with z-axis then
4: for each pixel (x, y) in the bounding box do

5: X ← (x, y, zi)
T . zi is the depth of pi

6: compute projection (u, v) of X to Camera i
7: if super pixel index of (u, v) in Ik = k then
8: accumulate depth zi, color, segmentation
9: end if

10: end for
11: end if
12: end for
13: end for

Patch reconstruction The normal vector and center position of each pi are estimated

from the set of 3D points Pi = {(xk, yk, zk)}, which have projections inside pi. As the

local coordinate frame of the block is aligned with the three major orthogonal directions

of the building, the computation is straightforward. Let σi
x, σi

y and σi
z be the standard

deviations of all 3D points in Pi in three directions. We first compute the normalized

standard deviations σ̂i
x = s̄x

si
x
σi

x, σ̂i
y = s̄y

si
y
σi

y, where si
x and si

y are the horizontal and

vertical sizes of the bounding box of the patch in the input images, and their median

respectively across all patches s̄x = medianis
i
x, s̄y = medianis

i
y. The normalization avoids

bias to a small patch. The patch pi is regarded as parallel to the façade base plane if σz

is smaller than σi
x and σi

y. And, all these parallel patches with small σz contribute to the

composition of an orthographic view of the façade. The orientation of such a patch pi is

aligned with the z-axis, and its position set at the depth zi = median(xj ,yj ,zj)∈pi
zj. One

example is shown in Figure 4.1(a).

Orthographic composition To simplify the representation for irregular shapes of the

patches, we deploy a discrete 2D orthographic space on the xy-plane to create an ortho-

graphic view O of the façade. The size and position of O on the xy-plane are determined

by the bounding box of the 3D points of the block, and the resolution of O is a parameter

that is actually set not to exceed 1024 × 1024. Each patch is mapped from its original

image space onto this orthographic space as illustrated in Figure 4.1 from (a) to (b).

We use an inverse orthographic mapping algorithm shown in Algorithm 2 to avoid gaps.

Theoretically, the warped textures of all patches create a true orthoimage O as each used

patch has a known depth and is parallel with the base plane.

For each pixel vi of the orthoimage O, we accumulate a set of depth values {zj}, a set

corresponding of color values {cj} and a set of segmentation labels {lj}. The depth of
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this pixel is set to the median of {zj} whose index is κ = arg medianjzj. Since the depth

determines the texture color and segmentation label, we take cκ and lκ as the estimated

color and label for the pixel. In practice, we accept a small set of estimated points around

zκ and take their mean as the color value in the texture composition. As the content of

images are highly overlapped, if a pixel is observed only once from one image, it is very

likely that it comes from an incorrect reconstruction. It will thus be rejected in the depth

fusion process. Moreover, all pixels {vi} with multiple observations
{{zj}i

}
are sorted in

non-decreasing order according to their standard deviation ςi = sd ({zj}) of depth sets.

After that, we define ς (η) to be the η |{vi}|-th element in the sorted {ςi}. We declare the

pixel vi to be unreliable if ςi > ς (η). The value of η comes from the estimated confidence

of the depth measurements. We currently scale the value by the ratio of the number of

3D points and the total pixel number of O.

Note that when we reconstruct the patches, we do not use the semantic segmentation

results in the input image space for two reasons. The first is that the patches used in

reconstruction are much larger in size than those used for semantic segmentation, and this

may lead to an inconsistent labeling. Though it is possible to estimate a unique label for

a patch, it may downgrade the semantic segmentation accuracy. The second is that the

possible errors in the semantic segmentation may over-reject patches, which compromises

the quality of the depth estimation. Therefore, we reconstruct the depth first and transfer

the segmentation results from the input image space to the orthographic view with pixel-

level accuracy, shown in Figure 4.1(f). After that, we remove the non-building pixels in

the orthoimage according to the segmentation label. Our composition algorithm for the

orthographic depth map is functionally close to the depth map fusion techniques such as

[175]. But our technique is robust as we use the architectural prior of orthogonality that

preserves structural discontinuity without over-smoothing.

4.1.2 Data structure

The 2.5D relief map representation is a bitmap representation of a façade. In this section,

we propose a vector graphics approach, to enable easy editing and rendering. Since we

want to represent the façade on a level higher than pixel, we want to decompose it using

some larger units. Decomposing a façade is also analyzing the structure in the hope of

reconstructing it with a smaller number of elements. In the first approximation, taking

all horizontal and vertical lines, and the intersections form a grid that gives an irregular

partition of the reference plane into rectangles of various sizes.

This partition captures the global rectilinear structure of the façades and buildings,

also keeps all discontinuities of the façade substructures. This usually gives an over-
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(a) (b) (c)

(d) (e)

building

(f)

Figure 4.1: Inverse orthographic composition. (a) Depth map in input image space.

(b) Partial orthographic depth map from one view. (c) Partial orthographic texture from

one view. (d) Composed orthographic depth map (unreliably estimated pixels are in

yellow). (e) Composed orthographic texture. (f) Composed orthographic building region.

segmentation of the image into patches. But this over-segmentation has several advan-

tages. The over-segmenting lines can also be regarded as auxiliary lines that regulate the

compositional units of the façades and buildings. Some “hidden” rectilinear structure of

the façade during the construction can also be re-discovered by this over-segmentation

process.

Hidden Structure Discovery

To discover the structure inside the façade, the edge of the reference texture image is first

detected by [176] because it is very efficient and robust to image noises empirically. With

such edge maps, hough transformation [177] is used to recover the line structure. To im-

prove robustness, the direction of hough transformation is constrained to only horizontal

and vertical, which happens in most situations of architecture façade. The detected lines
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are now formed a grid to partition the whole reference image, and this grid contains many

non-overlapped small line segments by taking intersection of hough lines as endpoints as

in Figure 4.3(b).

These small line segments are now the hypothesis to partition the façade. The hough

transformation is good for structure discovery since it can extract the hidden global infor-

mation from the façade and align small line segments to this hidden structure. However,

some small line segments in the formed grid may not really be a partition boundary be-

tween different regions. Hence, a weight we is defined on each small line segment e to

indicate the likelihood that this small line segment is a boundary of two different region

as shown in Figure 4.3(c). This weight is computed as the number of edge point from

Canny edge map that the line segment covered.

Remark on over-segmented partition It is true that the current partition schema

is subject to segmentation parameters. But it is important to note that usually a slightly

over-segmented partition is not harmful for the purpose of modeling. A perfect partition

certainly eases the regularization of the façade augmentation by the depths presented in

the next section, nevertheless, an imperfect, particularly a slight over-segmented partition,

does not affect the modeling results particularly even the 3D points are dense and the

stereo works well.

Recursive Subdivision

Given a region D in the reference texture image, it is divided into two sub rectangle

regions D1 and D2, such that D = D1 ∪D2, by a line segment L with strongest support

from the edge points. After D is subdivided into two separate regions, the subdivision

procedures continue on the two regions D1 and D2 recursively. The recursive subdivision

procedure is stopped if either the target region D is too small to be subdivided, or their

is no strong enough hypothesis, i.e. the region D is very smooth.

For street-view, the bilateral symmetry about a vertical axis may not exist for the

whole façade, but it exists locally and can be used for more robust subdivision. First,

for each region D, the NCC score sD of the two halves D1 and D2 vertically divided at

the center of D is computed. If sD > η, region D is considered to have the bilateral

symmetry. Then, the edge map of D1 and D2 are averaged, and subdivision is recursively

done on D1 only. Finally, the subdivision in D1 is reflected across the axis to become the

subdivision of D2, and merged the two subdivisions into the subdivision of D.

Recursive subdivision is good to preserve boundaries for man-made structure styles.

However, it may produce some unnecessary fragments for depth computation and render-
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Figure 4.2: Merging support evaluation.

ing as in Figure 4.3(d). Hence, as a post-processing, if two leaf subdivision regions are

neighbors, and there is enough support to separate them, they are merged into one region.

The support sAB to separate two neighbor regions A and B is defined to be the strongest

weights of all the small line segments on the border between A and B: sAB = maxe {we}.
However, the weights of small line segments can only offer a local image statistic on the

border. To improve the robustness, as a dual information region statistic between A and

B can be used more globally. As in Figure 4.2, Since regions A and B may not have

the same size, this region statistic similarity is defined as the following: First an axis is

defined on the border between A and B and region B is reflected on this axis to have a

region
−→
B . The overlapped region A ∩ −→B between A and

−→
B is defined to be the pixels

from A with location inside
−→
B . In a similar way,

←−
A ∩B contains the pixels from B with

location inside
←−
A , and then it is reflected to become

−−−−→←−
A ∩B according the same axis. The

normalized cross correlation (NCC) between A ∩ −→B and
−−−−→←−
A ∩B is used to defined the

region similarity of A and B. In this way, only the symmetric part of A and B is used for

region comparison. Therefore, the affect of other far away part of the region is avoided,

which will happen if the size of A and B is dramatically different and global statistic such

as color histogram is used. Weighted by a parameter κ, the support sAB to separate two

neighbor regions A and B is now defined as

sAB = max
e
{we}+ κNCC(A ∩ −→B,

−−−−→←−
A ∩B).

Notice that the representation of the façade is a binary recursive tree before merging.

And now after region merging, it is a Directed Acyclic Graph (DAG). The DAG represen-

tation can innately support Level of Detail displaying technique. When great details are

demanded, the rendering engine can just go down the rendering graph to expand all detail

leaves and render them correspondingly. Vice verse, the intermediate node is rendered

and all descendent are pruned at rendering time.
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Figure 4.3: Structure preserving subdivision. The hidden structure of the façade is

extracted out to form a grid in (b). Such hypothesis is evaluated according to the edge

support in (c), and the façade is recursive subdivided into several regions in (d). Since

there are no enough supports between Region A,B,C,D, E, F,G, H, they are all merged

into one single region M in (e).

Repetitive Pattern Representation

Repeat pattern of façade exists globally for higher floors of building, but not in the

ground floors that we are mainly working on. In [178], the essential step, to detect

the global repetitive pattern and to use them for analysis of the façade structure, is

not applicable in our street-view modeling. In our workflow, this step is replaced by the

recursive subdivision described in the previous subsection. However, the repetitive pattern

of the façade does locally exist in many façades and most of them are windows. [178]

uses a quite complicated technique for synchronization of subdivision between different

windows.

To save storage space and easy the synchronization task, in our method, only one sub-

division representation for the same types of windows are maintained. Precisely, window

template is first detected by trained model [179] or manually indication on the reference

texture images. The templates are matched across the reference texture image using NCC

as measurement. If good enough matchings exist, they are firstly aligned according to

the horizontal or vertical direction by a hierarchical clustering, and the canny edge maps

on these regions are averaged. During the subdivision, each matched region is isolated by

shrinking a bounding rectangle on the average edge maps until snapping to strong edge,

and is regarded as a whole leaf region. The edges inside these isolated regions should not

affect the global structure, and hence these edge points are not used during the global

subdivision procedure. Then, as in Figure 4.4, all the matched leaf regions are linked to

the root of a common subdivision DAG for that type of window, by introducing a 2D

translation node for the pivot position. Recursive subdivision is again run on the average

edge maps of all matched regions. To preserve photo realism, the textures in these regions

are not shared and only the subdivision DAG and their respective depths are shared. Fur-
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Figure 4.4: A DAG for repetitive pattern representation.

thermore, to improve the robustness of subdivision, vertical bilateral symmetric is taken

as hard constraint for windows.

4.2 Structure analysis

From the composed orthographic depth map and texture image for each façade, we want

to identify the structural elements at different depths of the façade to enrich the façade ge-

ometry. To cope with the irregular, noisy and missing depth estimations on the façade, a

strong regularization from the architecture priors is therefore required. Most of buildings

are governed by vertical and horizontal lines and form naturally rectangular shapes. We

restrict the prior shape of each distinct structure element to be a rectangle, such as the

typical extruding signboard in Figure 4.1.

4.2.1 Joint analysis

We use a bottom-up, graph-based segmentation framework [174] to jointly segment the

orthographic texture and depth maps into regions, where each region is considered as a dis-

tinct element within the façade. The proposed shape-based segmentation method jointly

utilizes texture and depth information, and enables the fully automatic façade structure

analysis. Xiao et al. [64] also proposed a functional equivalent top-down recursive sub-

division method. However, it has been shown in [64] to be inefficient to produce satisfiable

result without any user interaction.

A graph G = 〈V , E〉 is defined on the orthoimage image O with all pixels as vertices V
and edges E connecting neighboring pixels. To encourage horizontal and vertical cut, we

use 4-neighborhood system to construct E . The weight function for an edge connecting two
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pixels with reliable depth estimations is based both on the color distance and normalized

depth difference

w ((vi, vj)) = ‖ci − cj‖2 ·
(

zi − zj

ς (η)

)2

,

where ‖ci − cj‖2 is the L2-Norm of the RGB color difference of two pixels vi and vj. We

slightly pre-filter the texture image using a Gaussian of small variance before computing

the edge weights. The weight for an edge connecting two pixels without reliable depth

estimations is set to 0 to force them to have the same label. We do not construct an edge

between a pixel with a reliable depth and a pixel without a reliable depth, as the weight

cannot be defined.

We first sort E by non-decreasing edge weight w. Starting with an initial segmentation

in which each vertex vi is in its own component, the algorithm repeats for each edge

eq = (vi, vj) in order for the following process: If vi and vj are in disjoint components Ci 6=
Cj, and w (eq) is small compared with the internal difference of both those components,

w (eq) ≤ MInt (Ci, Cj), then the two components are merged. The minimum internal

difference is defined as

MInt (C1, C2) = min (Int (C1) + τ (C1) , Int (C2) + τ (C2)) ,

where the internal difference of a component C is the largest weight in the minimum

spanning tree of the component

Int (C) = max
e∈MST (C,E)

w (e) .

The non-negative threshold function τ (C) is defined on each component C. The difference

in this threshold function between two components must be greater than their internal

difference for an evidence of a boundary between them. Since we favor a rectangular shape

for each region, the threshold function τ (C) is defined by the divergence ϑ (C) between

the component C and a rectangle, which is the portion of the bounding box BC with

respect to the component C, ϑ (C) = |BC | / |C|. For small components, Int (C) is not

a good estimate of the local characteristics of the data. Therefore, we let the threshold

function be adaptive based on the component size,

τ (C) =

(
%

|C|
)ϑ(C)

,

where % is a constant and is set to 3.2 in our prototype. τ is large for components that

do not fit a rectangle, and two components with large τ are more likely to be merged.

A larger % favors larger components, as we require stronger evidence of a boundary for

smaller components.
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Once the segmentation is accomplished, the depth values for all pixels in Ci of each

reliable component Ci are set to the median. The depth of the largest region is regarded

as the depth of the base plane for the façade. Moreover, an unreliable component Ci

smaller than a particular size, set to 4% of the current façade area, is merged to its only

reliable neighboring component if such a neighboring component exists.

4.2.2 Shape regularization

Except for the base plane of the façade, we fit a rectangle to each element on the façade.

For an element C = {vi = (xi, yi)}, we first obtain the median position (xmed, ymed)

by xmed = medianixi and ymed = medianiyi. We then remove outlier points that are

|xi − xmed| > 2.8σx or |yi − ymed| > 2.8σy, where σx =
∑

i |xi − xmed| / |C| and σy =∑
i |yi − ymed| / |C|. Furthermore, we reject the points that are in the 1% region of the

left, right, top and bottom according to their ranking of x and y coordinates in the re-

maining point set. In this way, we obtain a reliable subset Csub of C. We define the

bounding box BCsub
of Csub as the fitting rectangle of C. The fitting confidence is then

defined as

fC =
BCsub

∩ C

BCsub
∪ C

.

In the end, we only retain the rectangles as distinct façade elements if the confidence

fC > 0.72 and the rectangle size is not too small.

The rectangular elements are automatically snapped into the nearest vertical and

horizontal mode positions of the accumulated Sobel responses on the composed texture

image, if their distances are less than 2% of the width and height of the current façade.

The detected rectangles can be nested within each other. When producing the final 3D

model, we first pop up the larger element from the base plane and then the smaller element

within the larger element. If two rectangles overlap but do not contain each other, we

first pop up the one that is closest to the base plane.

4.2.3 Repetitive pattern rediscovery

Structure elements are automatically reconstructed in the previous section. However,

when the depth composition quality is not good enough due to poor image matching, re-

flective materials or low image quality, only a few of them could be successfully recovered.

For repetitive elements of the façade, we can now systematically launch a re-discovery

process using the discovered elements as templates in the orthographic texture image do-

main. The idea of taking advantage of repetitive nature of the elements has been explored

in [178, 64].
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(a) (b) (c)

Figure 4.5: Structure analysis and regularization for modeling. (a) The façade seg-

mentation. (b) The data cost of boundary regularization. The cost is color-coded from

high at red to low at blue via green as the middle. (c) The regularized depth map.

We use the Sum of Squared Differences (SSD) on RGB channels for template matching.

Unlike [64] operating in 2D search space, we use a two-step method to search twice in 1D,

shown in Figure 4.6. We first search in horizontal direction for a template Bi and obtain

a set of matches Bi by extracting the local minima under a threshold. Then, we use

both Bi and Bi together as the template to search for the local minima along the vertical

direction. This leads to more efficient and robust matching, and automatic alignment of

the elements. A re-discovered element by template matching inherits the depth of the

template.

When there are more than one structure element discovered previously by joint seg-

mentation representing the same kind of structure elements, we also need to cluster the

re-discovered elements using a bottom-up hierarchical merging mechanism. Two tem-

plates Bi and Bj obtained by joint segmentation with sets of matching candidates Mi

and Mj are merged into the same class, if one template is sufficiently similar to any ele-

ment of the candidates of the other template. Here, the similarity between two elements

is defined as the ratio of the intersection area by the union area of the two elements. The

merging process consists of averaging element sizes between Mi ∪ {Bi} and Mj ∪ {Bj},
as well as computing the average positions for overlapped elements in Mi ∪ {Bi} and

Mj ∪ {Bj}.

4.3 Boundary regularization

The boundaries of the façade of a block are further regularized to favor sharp change

and penalize serration. We use the same method as for shape regularization of structure
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(a) The façade segmentation (b) Template

(c) Horizontal matching (d) Matching results

Figure 4.6: Repetitive pattern rediscovery.

elements to compute the bounding box [xmin, xmax] × [ymin, ymax] of the façade. Finally,

we further optimize the upper boundary of the façade, as we cannot guarantee that a

building block is indeed a single building with the same height during block partition.

Illustrated in Figure 4.7, we lay out a 1D Markov random field on the horizontal

direction of the orthoimage. Each xi ∈ [xmin, xmax] defines a vertex, and an edge is added

for two neighboring vertices. The label li of xi corresponds to the position of the boundary,

and li ∈ [ymin, ymax] for all xi. Therefore, one label configuration of the MRF corresponds

to one façade boundary. Now, we utilize all texture, depth and segmentation information

to define the cost.

The data cost is defined according to the horizontal Sobel responses

φi (lj) = 1− HorizontalSobel (i, j)

2 maxxy HorizontalSobel (x, y)
.

Furthermore, if lj is close to the top boundary ri of reliable depth map, |lj − ri| < β,

where β is empirically set to 0.05(ymax − ymin + 1), we update the cost by multiplying it

with (|lj − ri| + ε)/(β + ε). Similarly, if lj is close to the top boundary si of segmenta-

tion |lj − si| < β, we update the cost by multiplying it with (|lj − si| + ε)/(β + ε). For

the façades whose boundaries are not in the viewing field of any input image, we snap

the façade boundary to the top boundary of the bounding box, and empirically update

φi (ymin) by multiplying it with 0.8. Figure 4.5(b) shows one example of defined data cost.

The height of the façade upper boundary usually changes in the regions with strong

vertical edge responses. We thus accumulate vertical Sobel responses at each xi into
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Figure 4.7: An example of MRF to optimize façade upper boundary.

Vi =
∑

y∈[ymin,ymax] VerSobel (i, y) , and define the smoothness term to be

φi,i+1 (li, li+1) = µ |li − li+1|
(

1− Vi + Vi+1

2 maxj Vj

)
,

where µ is a controllable parameter.

The boundary is optimized by minimizing a Gibbs energy [158]

E (L) =
∑

xi∈[xmin,xmax]

φi (li) +
∑

xi∈[xmin,xmax−1]

φi,i+1 (li, li+1) ,

where φi is the data cost and φi,i+1 is the smoothing cost. The exact inference can be

obtained with a global optimum by methods such as belief propagation [180].

4.4 Texture mapping

4.4.1 Model production

Each façade is the front side of the building block. We can extend a façade in the z-

direction into a box with a constant depth (the default constant is set to 18 meters in the

current implementation) to represent the geometry of the building block, as illustrated in

Figure 4.4.1(c).

All the blocks of a sequence are then assembled into the street side model. The texture

mapping is done by visibility checking using z-buffer ordering. The side face of each block

can be automatically textured as illustrated in Figure 4.4.1 if it is not blocked by the

neighboring buildings.
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(a) (b) (c)

Figure 4.8: Model production and texture mapping. (a) The texture-mapped

façade. (b) The texture-mapped block. (c) The block geometry.

4.4.2 Occlusion removal

The geometry of the façade is initialized as a flat rectangle. Usually a façade is too big to

be entirely observable in one input image. We first compose a texture image for the entire

rectangle of the façade from the visible images of the façade. This process is different

from image mosaic, as the images have parallax that is helpful for removing the undesired

occluding objects, such as pedestrians, cars, trees, telegraph poles and rubbish bins, in

front of the target façade. Since we have a known position initial plane for the target

façade, occluders can be removed by photo consistency checking to obtain a better texture

image than pure mosaic.

As many multi-view stereo methods [3], the photo consistency is defined as followed.

Consider a 3D point X = (x, y, z, 1)′ with color c. If it has a projection xi = (ui, vi, 1)′ =

PiX in the i-th camera Pi, under Lambertian surface assumption, the projection xi should

also have the same color c. However, if the point is occluded by some other objects in this

camera, the color of the projection is usually not the same as c. Note that c is unknown

and what we want here. Assuming the point X is visible from multiple cameras I = {Pi}
and occluded by some objects in the other cameras I ′ = {Pj}, then the color ci of the

projections in I should be the same as c, while it may be different from the color cj of

projections in I ′. Now, given the a set of projection color {ck}, the task is to identify a

set O of the occluded cameras. In most of the situation, we can assume that the point X

is visible from most of the cameras. Under this assumption, we have ĉ ≈ mediank {ck}.
Given the estimated color of the 3D point ĉ, it is now very easy to identify the occluded set

O according to their distances with ĉ. To improve the robustness, instead of a single color,

91



Algorithm 3 Photo Consistency Check For Occlusion Detection

Require: A set of N image patches P = {p1,p2, . . . ,pN} corresponding to the projec-
tions of the 3D point X.

Require: η ∈ [0, 1] to indicate when two patches are similar.
1: for all pi ∈ P do
2: si ← 0 . Accumulated similarity for pi
3: for all pj ∈ P do
4: sij ←NCC(pi,pj)
5: if sij > η then si ← si + sij

6: end if
7: end for
8: end for
9: n̂ ← arg maxi si . n̂ is the patch with best support

10: V ← ∅ . V is the index set with visible projection
11: O ← ∅ . V is the index set with occluded projection
12: for all pi ∈ P do
13: if sin̂ > η then V ← V ∪ {i}
14: else O ← O ∪ {i}
15: end if
16: end for
17: return V and O

the image patches centered at the projections are used, and patch similarity, normalized

cross correlation (NCC), is used as a metric. The detail is presented in Alg. 3. In this

way, with the assumption that the façade is almost planar, each pixel of the reference

texture corresponds to a point lies on the flat façade. Hence, for each pixel, we can

identify whether it is occluded in a particular camera.

Now, for a given planar façade in space, all visible images are sorted according to

the fronto-parallelism of the images with respect to the given façade. An image is to be

more fronto-parallel if the projected surface of the façade in the image is larger. The

reference image is first warped from the most fronto-parallel image, then from the lesser

ones according to the visibility of the point. In each step, because the occluding region by

other objects is not pasted on the reference image, some region of the reference texture

image still leaves empty. In a later step, if that empty region is not occluded and visible

from the new camera, the region is filled. In this way, a multi-view inpainting is done to

fill the occluded region from each single camera. At the end of the process, if some regions

are still empty, a normal image inpainting technique are used to fill it either automatically

by [181] or interactively with guide by the users in Section 4.5.1. Since we have adjusted

the cameras according to the image correspondence, this simple mosaic without explicit

blending can already produce very visual pleasing results.
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(a) (b) (c)

Figure 4.9: Texture optimization. (a) The original orthographic texture image. (b)

The optimized texture image. (c) A direct texture composition. The optimized texture

image in (b) is more clear than the original orthographic texture image in (a), and has

no texture from occluding objects, such as the one contained in (c).

4.4.3 Texture optimization

The orthographic texture for each front façade by Algorithm 1 is a true orthographic

texture map. But as a texture image, it suffers from the artifacts of color discontinuities,

blur and gaps, as each pixel has been independently computed as the color of the median

depth from all visible views. However, it does provide very robust and reliable information

for the true texture, and contain almost no outlier from occluding objects. Therefore,

we re-compute an optimized texture image for each front façade, regarding the original

orthographic texture image as a good reference.

Suppose that each façade has N visible views. Each visible view is used to compute

a partial texture image for all visible points of the façade. Then we obtained N partial

texture images for the façade. Next, we define a difference measurement as the squared

sum of differences between each pixel of the partial texture images and the original or-

thographic texture image at the same coordinate. This is the data term for a Markov

Random Field on the orthographic texture image grid. The smoothing term is defined

to be the reciprocal of the color difference between each neighboring pair of pixels on the

original orthographic texture image. The desired orthographic texture image is computed

using GraphCut alpha-expansion [159]. If seam artifacts are serious, poisson blending

[182] can be used as post-process. Figure 4.9 shows the comparative results of this pro-

cess. Figure 4.9(c) also shows a direct texture warping from most fronto-parallel image

as in [64], which fails to remove the occluding objects, i.e. the telegraph pole in this case.
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(a) Indicate (b) Remove (c) Inpaint (d) Guide (e) Result

Figure 4.10: Interactive texture refinement. (a) The user draws strokes on the ad-

vertisement billboard to indicate removal. (b) The billboard is removed. (c) The region

is automatically inpainted. (d) If not satisfying, some lines (in green) can be drawn to

guide the structure. (e) Now better result is achieved with the guide lines.

4.5 Editing

So far, the modeling is computed fully-automatically. If the user wants to make some

manual efforts for improvement, we also provide several convenient mechanisms for model

editing.

4.5.1 Interactive texture inpainting

As shown in Figure 4.10, if the automatic texture composition result is not satisfactory,

a two-step interactive user interface is provided for refinement. In the first step, the

user can draw strokes to indicate which object or part of the texture is undesirable as

in Figure 4.10(a). The corresponding region is automatically extracted based on the

input strokes as in Figure 4.10(b) using the method in [183]. The removal operation

can be interpreted as that the most fronto-parallel and photo-consisted texture selection,

from the result of Algorithm 3, is not what the user wants. For each pixel, n̂ from Line

9 of Alg. 3 and V should be wrong. Hence, P is updated to excluded V : P ← O.

Then, if P 6= ∅, Alg. 3 is run again. Otherwise, image inpainting [181] is used for

automatically inpainting as in Figure 4.10(c). At the second step, if the automatic texture

filling is poor, the user can manually specifies important missing structure information

by extending a few curves or line segments from the known to the unknown regions as

in Figure 4.10(d). Then as in [184], image patches are synthesized along these user-

specified curves in the unknown region using patches selected around the curves in the

known region by Loopy Belief Propagation to find the optimal patches. After completing

structure propagation, the remaining unknown regions are filled using patch-based texture

synthesis as in Figure 4.10(e).
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(a) Add (b) Delete (c) Change

(d) Group (e) Carve

Figure 4.11: Five operations for subdivision refinement. In each subfigure, the left

figure is the original subdivision layout shown in red and the user sketched stroke shown

in green, while the right figure is the result subdivision layout.

4.5.2 Interactive subdivision refinement

In most situations, the automatic subdivision works satisfactorily. If the user wants to

further refine the subdivision layout, three line operations and two region operations are

provided as hard constraints as in Figure 4.11. On the other hand, the current automatic

subdivision operates on the horizontal and vertical directions for robustness and simplicity.

The fifth ’carve’ operator allows the user to manually sketch arbitrarily shaped objects,

appeared less frequently, to be included in the façade representation.

Add To partition an existing subdivision region, the user can sketch a stroke to indicate

the partition as in Figure 4.11(a). The edge points near the stroke are forced to

become salient, and hence the subdivision engine can figure the line segment out

and partition the region.

Delete To delete a line segment between two regions, the user can sketch a “Z” shape

stroke to cross out the line segments as in Figure 4.11(b).

Change To differently partition a region, the user can first delete the partition line

segments and then add a new line segment. Alternatively, the user can directly

sketch a stroke. Then, the line segment across by the stroke will be deleted and

a new line segment will be constructed accordingly as in Figure 4.11(c). After the

corresponding operation executed, all descendants with the target region as root

node in the DAG representation will be triggered to be re-computed.

Group The user can draw a stroke to cover several regions, in order to merge them into

a single group as in Figure 4.11(d).
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Carve The user can draw line segments or Non-Uniform Rational B-Spline (NURBS)

curve to carve and split the existing subdivision layout as in Figure 4.11(e). In this

way, any shape can be extruded and hence be supported.

4.5.3 Interactive depth assignment

In most situations, the depth automatically reconstructed is already good enough for

visual inspection. For building that needs more details and better depth displacement

such as landmarks, our workflow also provides friendly user interface to facilitate the

interactive depth assignment tasks, where rather than 3D interaction, 2D operations are

emphasized. All our tools provide interactive feedback and the user can directly assert

the result in 3D.

glass

transparent

(a) Depth Palettes (b) Transfer (c) Relative Constraint

Figure 4.12: Three interactive depth assignment operations. (a) getting depth

directly from depth palettes, (a) transferring depth from other region, (b) adding relative

constraint.

Transfer from Other Region If it is not easy to directly paint the corresponding

depth, the depth can be transferred from other region by dragging an arrow line to

indicate the source and target regions.

Relative Depth Constraint The relative depth between two regions can also be con-

strained by drag a two-circle ended line. The sign symbols in the circles indicate the order,

and the radius of the circles, controlling by the + and - key in the keyboard, represent

the depth difference. The difference is taken as hard constraint in the MRF optimization

by merging the two nodes in the layout into one and updating the data and smooth costs

accordingly.
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4.5.4 Re-modeling

So far, we approximated each elementary unit of the façade as a cubical box that is

sufficient for majority of the architectural objects at the scale in which we are interested.

Obviously, some façades may have elements of different geometries. Each element can be

manually re-modeled by using a pre-defined generic model of type cylinder, sphere, and

polygonal solid to replace the given object. The texture is then re-computed automatically

from the original images. The columns, the arches, and pediments can be modeled this

way. Our decomposition approach makes this replacement convenient particularly for a

group of elements with automatic texture re-mapping.
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CHAPTER 5

EVALUATION

5.1 Interactive modeling

Three representative large-scale data sets captured under different conditions were chosen

to show the flexibility of our approach. Video cameras on a vehicle are used for the first

data set, a digital camera on a vehicle for the second, and a handheld camera for the

third.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5.1: Two typical façade examples in the first two rows from different

data sets and the most difficult example in the third row. (a) One input view.

(b) The 3D points from SFM. (c) The initial textured flat façade. (d) The automatic

façade partition (the group of repetitive patterns is color-coded). (e) The user-refined

final partition. (f) The re-estimated smoothed façade depth. (g) The user-refined final

depth map. (h) The façade geometry. (i) The textured façade model.

For computation of the structure from motion, long sequences were broken down

into sub-sequences of about 50 images that are downsampled to the resolution of below

1000×1000. Semi-dense SFM is automatically computed for each subsequence with auto-

calibration in about 10 minutes with a PC (CPU Intel Core 2 6400 at 2.13GHz and 3GB
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RAM). The subsequences are merged into a global sequence using one fifth of the recon-

structed points from the sub-sequences and the GPS/INS (Inertial Navigation System)

data if it is available. To capture tall buildings in full, an additional camera captures

views looking upwards in 45 degrees, with little or no overlapping between the viewing

fields of the cameras. The cameras are mounted on a rigid rig that can be pre-calibrated,

so that viewing positions could be transferable between the cameras if the computation

for one camera is difficult.

Baity Hill Drive, Chapel Hill. Shown in Figure 5.2, these images were captured by

two video cameras [10] of resolution 1024×768 mounted on a vehicle with a GPS/INS. We

sampled a sequence of 308 images from each camera. The resulting clouds of 3D points

were georegistered with the GPS/INS data. The video image quality is mediocre, although

the richness of the building texture is excellent for SFM. It took about 20 minutes for the

segmentation on the ground. The geometry of the building blocks is rather simple, and

it was reconstructed in about one hour.

Figure 5.2: The modeling of a Chapel Hill street from 616 images. Two input

images are on the top left; the recovered model rendered is in the bottom row; and two

zoomed sections of the recovered model rendered are in the middle and on the right of

the top row. The data set is provided by University of North Carolina at Chapel Hill and

University of Kentucky [10].
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Figure 5.3: A few façade modeling examples from the two sides of a street with

614 captured images. Some input images are in the bottom row; the recovered model

rendered is in the middle row; and three zoomed sections of the recovered model rendered

are in the top row.

Dishifu Road, Canton. Shown in Figure 5.3, these images were captured by a hand-

held Canon 5D camera using a 24mm wide lens with 2912 × 4368 image resolution. A

total of 343 views were captured for one side of the street and 271 views for the opposite

side.The arcade is modeled using two façades: a front façade for the top part of the arcade

and the columns in the front, and a back façade for its lower part. These two façades are

merged together and the invisible ceiling connecting the two parts is manually added.

The interactive segmentation on the ground took about one hour and the reconstruction

took about two hours for both sides of the street.

Hennepin Avenue, Minneapolis. Shown in Figure 5.4, these images were captured

by a set of cameras mounted on a vehicle equipped with a GPS/INS system. Each camera

has a resolution of 1024×360. The main portion of the Hennepin avenue was covered by a

sequence of 130 views using only one of the side-looking cameras. An additional sequence

of seven viewing positions taken by an additional side camera pointed 45 degrees up was

used for the processing of the structure of the masonic temple to capture the top part

of the building. To generate a more homogeneous textured layer from multiple images,

the images were white balanced using the diagonal model of illumination change. The

Hennepin Avenue in Figure 5.4 was modeled in about one hour. The Masonic Temple is

the most difficult one to model and it took about 10 minutes including re-modeling.

For the rendering results in the video, we assigned different reflective properties for

100



Figure 5.4: Modeling of the Hennepin avenue in Minneapolis from 281 images.

Some input images are in the bottom row, the recovered model rendered is in the middle

row, and three zoomed sections of the recovered model rendered are in the top row. This

data set is provided by Microsoft Virtual Earth.

the windows and manually modeled the ground and vegetation. Our approach has been

found to be efficient: Most manual post-editing was needed for visually important details

near the roof tops of the buildings, where the common coverage of the images is small,

and the quality of the recovered point cloud is poor. The re-modeling with generic models

for clusters of patches is done only on the Hennepin Avenue example. It is obvious that

the accuracy of the camera geometry and the density of reconstructed points are keys to

the modeling. GPS/INS data did help to improve the registration of long sequences and

avoid the drift associated with the SFM.

Typical façades Some typical façade examples from each data set are shown in Figure

5.1. An example from the Minneapolis data is also in the flowchart. We show both the

before and after editing of the automatic partition, which shows that the majority of the

façade partitions can be automatically computed with a over-segmentation followed by

minor user adjustments. On average, the automatic computation time is about one minute

per façade, then followed by about another minute of manual refinement.depending on

the complexity and the desired reconstruction quality.
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Difficult façade The masonic temple façade in the third row of Figure 5.1 shows the

most difficult case that we encountered, mainly due to the specific capturing conditions.

The overlapping of the images for the upper part of the building is small and we reconstruct

only few points. The depth map for the upper part is almost constant after optimization.

User interaction is more intensive to re-assign the depth for this façade.

Atypical façades Figure 5.5 shows some special façade examples that are also nicely

handled by our approach.

• Cylindrical Façade An example of cylindrical façade is illustrated in Figure 5.5(b).

The cylindrical façade is modeled first, and then the second façade touched on it is

modeled.

• Re-modeling This option was tested in the example of Hennepin avenue in Fig-

ure 5.4. The re-modeling results with 12 clusters shown in the top middle of Fig-

ure 5.5(c) can be compared with the results obtained without re-modeling shown

on the right of Figure 5.1.

• Multiple Façades For the topologically complex building façades, we could use

multiple façades. The whole Canton arcade street in Figure 5.3 systematically used

two façade, the second façade uses the first façade in front as the occluders, shown

in Figure 5.5(a).

We have presented an image-based street-side modeling approach that takes a se-

quence of overlapping images along the street, and produces complete photo-realistic 3D

façade models. Our approach has several limitations for improvement as future work.

The automatic depth reconstruction techniques may fail when trying to model highly

reflective mirror-like buildings. And the reflectance properties of the models might be

automatically recovered from multiple views. Furthermore, non-rectilinear objects might

also be automatically detected during partition.

5.2 Automatic modeling

We have implemented our system and tested on the street-side images of downtown Pitts-

burgh. These images have been used in Google Street View to create seamless panoramic

views. Therefore, the same kind of images is currently available for about 200 major cities

in the world, which have been captured without online human control and with noises and

glares. The image resolution is 640× 905. Some example images are shown in Figure 5.8.
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(a) Two Layers

(b) A cylindrical façade example

(c) Re-modeling by replacing a cube by a cylinder or a sphere

Figure 5.5: Atypical façades examples.
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(a) (b) (c) (d) (e) (f)

Figure 5.6: Modeling examples of various blocks. (a) The orthographic texture. (b)

The orthographic color-coded depth map (yellow pixel is unreliable). (c) The façade seg-

mentation. (d) The regularized depth map. (e) The geometry. (f) The textured model.

Each sequence is reconstructed using the structure from motion algorithm to produce a

set of semi-dense points and camera poses. The cameras are then geo-registered back

to the GPS coordinate frame. All sequences of a scene are merged with the overlapping

camera poses.

We have implemented our methods with unoptimized C++ code, and tune the param-

eters manually on a set of 5 façades. For a portion of Pittsburgh, we used 10,498 images,

and reconstructed 202 building blocks. On a small cluster composed by 15 normal desktop

PCs, the results are produced automatically in 23 hours, including approximately 2 hours

for SFM, 19 hours for segmentation, and 2 hours for partition and modeling. Figure 5.7

shows different examples of blocks and the intermediate results. Figure 5.9 shows a few

close-up views of the final model. For rendering, each building block is represented in two

levels of detail. The first level has only the façade base plane. The second level contains
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(a) (b) (c) (d) (e) (f)

Figure 5.7: Modeling examples of various blocks (Con’t). (a) The orthographic

texture. (b) The orthographic color-coded depth map (yellow pixel is unreliable). (c) The

façade segmentation. (d) The regularized depth map. (e) The geometry. (f) The textured

model.

the augmented elements of the façade.

In the semantic segmentation, we hand-labeled 173 images by uniformly sampling

images from our data set to create the initial database of labeled street-side images. Some

example labeled data is shown in the accompanying video. Each sequence is recognized

and segmented independently. For testing, we do not use any labeled images if they come

from the same sequence in order to fairly demonstrate the real performance on unseen

sequences.

Our method is remarkably robust for modeling as the minor errors or failure cases

do not create visually disturbing artifacts. The distinct elements such as windows and

doors within the façade may not always be reconstructed due to lack of reliable 3D points.

They are often smoothed to the façade base plane with satisfactory textures as the depth

105



Figure 5.8: Two close-up street-side views 1 and 2 of a modeled city area shown

in the first two rows. All the models are automatically generated from input images,

exemplified by the bottom row. The close-up street-side view 3 is shown in Figure 5.9.

variation is small. Most of the artifacts are from the texture. Many of the trees and people

are not removed from the textures on the first floor of the buildings seen in Figure 5.9.

These could be corrected if an interactive segmentation and inpainting is used. There

are some artifacts on the façade boundaries if the background buildings are not separated

from the foreground buildings, shown in the middle of Figure 5.9. Some other modeling

examples are also shown in Figure 5.7.

Limitations The restriction to the rectangular shape and trade-off for robustness is

a limitation for more demanding modeling tasks such as landmark buildings. But the

rectangular element can always be considered as the first level approximation. Then, it

could be easily replaced by other objects or refined by other methods. With the limited

viewing field of a single camera, we miss the upper parts of tall buildings. We can

either merge the current street-side modeling of the lower parts of the buildings with the

modeling results from aerial images for the upper parts, or we could deploy a multi-camera

system with one of them pointing upward to capture the upper parts of the buildings.

These limitations reflect more on the current implementation, but not on the framework

that could be extended to remove these limitations.
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Figure 5.9: Two close-up street-side views of the city models automatically

generated from the images shown on the bottom.

(a) (b) (c) (d) (e) (f)

Figure 5.10: Automatic reconstruction for Guangzhou dataset. Our results are

presented from (a) to (f) with the same legend as in Figure 5.7.
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CHAPTER 6

CONCLUSION

In this thesis, we focus on a systematic computation pipeline for image-based building

modeling, which takes a sequence of overlapping images captured along the street and

produces the complete photo-realistic 3D models. Although this challenging problem

has been studied for a long time in both academic research and commercial industrial

communities, all the existing approaches still need plenty of human efforts in order to

produce satisfactory results.

This thesis presents an automatic approach that only requires minimal human efforts

for image-based building modeling to achieve visual pleasing results. This image-based

approach has three steps: reconstruction, segmentation and modeling. Our three-step

approach is remarkably robust, because it clearly divides the work into subproblems prop-

erly, and conquers each subproblem with strategies according to different objectives to be

achieved in each stage. While this approach is also suitable for general image-based mod-

eling of any object, specifical focus is on man-made buildings, where Manhattan-world

property presents frequently.

The approach has been successfully demonstrated on large amount of data for building

modeling in several cities, including Pittsburgh, Minneapolis, Chapel Hill in the United

States, and Guangzhou in China. The proposed method is able to greatly improve the

productivity for large-scale city modeling. Although there are a few limitations to the

current implementation of the system, they can be improved within the same framework.

As the reviewers of ACM Transaction on Graphics said, “Although the system still has

limitations and the models show some artifacts, it is a clear step ahead for the state of

the art” and “represents a significant progress beyond the state of the art.”
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