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Motivation

Given a picture, the task for scene categorization is to identify the place that
it depicts. Algorithms have previously been evaluated on the incrementally
built 15 scene database. But our visual world is far more diverse than this.
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To get an exhaustive list of environmental categories, we selected from the
70,000 terms of all the terms of WordNet that described scenes, places,
and environments. For each scene category, images were retrieved from
various search engines. Each image was manually examined to confirm
whether or not it fit a detailed, verbal definition for its category. After clean
up, the dataset reaches 899 categories and 130,519 image. And we use
397 well-sampled categories in the following evaluation.
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Experiment on Mechanical Turk.
To show that our database is con-
structed consistently and with mini-
mal overlap between categories, we
hire human workers to navigate
through an over-complete three-

level hierarchy to arrive at a specific Turk GUI for 3-level Selection
scene type for each image. R T L e s
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Computational Scene Classification Seeing Scenes in Scenes

We selected or designed several state-of-art features that are potentially useful for scene classification, and several different kind of kernels including Histogram Intersection, Chi-square, RBF,

L1, etc. We train classifiers with one-vs-all Support Vector Machines. The “all features” classifier is built from a weighted sum of the kernels of the individual features. The weight of each con- There are many complementary levels of image understanding. One can understana

images at the global scene level (left) or the local object level (right). Here, we introduce

stituent kernel is proportional to the fourth power of its individual accuracy. Example Classification Result . .
o | P _ N the concept of detection of local subscenes (middle).
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Scene detectlon result examples. This figure shows the two most confident detections
for several images. The detections with a red bounding box are incorrect detections and
the green bounding boxes denote correct detections.
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Accuracies Comparision. Categories with performance in human (left) and computer (right).
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