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Abstract

Although an image is a 2D array, we live in a 3D world.
The desire to recover the 3D structure of the world from 2D
images is the key that distinguished computer vision from
the already existing field of image processing 50 years ago.
For the past two decades, the dominant research focus for
3D reconstruction is in obtaining more accurate depth maps
or 3D point clouds. However, even when a robot has a depth
map, it still cannot manipulate an object, because there is
no high-level representation of the 3D world. Essentially,
3D reconstruction is not just a low-level task. Obtaining
a depth map to capture a distance at each pixel is analo-
gous to inventing a digital camera to capture the color value
at each pixel. The gap between low-level depth measure-
ments and high-level shape understanding is just as large as
the gap between pixel colors and high-level semantic per-
ception. Moving forward, we would like to argue that we
need a higher-level intelligence for 3D reconstruction. We
would like to draw attention of the 3D reconstruction re-
search community to put greater emphasis on mid-level and
high-level 3D understanding, instead of exclusively focus
on improving of low-level reconstruction accuracy, as is the
current situation. In this report, we retrospect the history
and analyze some recent efforts in the community, to argue
that a new era to study 3D reconstruction at higher level is
starting to come.

1. Introduction
Although an image is a 2D array, we live in a 3D world

where scenes have volume, affordances, and are spatially ar-
ranged with objects occluding each other. The ability to rea-
son about these 3D properties would be useful for tasks such
as navigation and object manipulation. As humans, we per-
ceive the three-dimensional structure of the world around us
with apparent ease. But for computers, this has been shown
to be a very difficult task, and have been studied for about
50 years in the 3D reconstruction community in computer
vision, which has made significant progress. Especially,
in the past two decades, the dominant research focus for

3D reconstruction is in obtaining more accurate depth maps
[44, 45, 55] or 3D point clouds [47, 48, 58, 50]. We now
have reliable techniques [47, 48] for accurately computing
a partial 3D model of an environment from thousands of
partially overlapping photographs (using keypoint match-
ing and structure from motion). Given a large enough set of
views of a particular object, we can create accurate dense
3D surface models (using stereo matching and surface fit-
ting [44, 45, 55, 58, 50, 59]). In particular, using Microsoft
Kinect (also Primesense and Asus Xtion), a reliable depth
map can be obtained straightly out of box.

However, despite all of these advances, the dream of hav-
ing a computer interpret an image at the same level as a two-
year old (for example, counting all of the objects in a pic-
ture) remains elusive. Even when we have a depth map, we
still cannot manipulate an object because there is no high-
level representation of the 3D world. Essentially, we would
like to argue that 3D reconstruction is not just a low-level
task. Obtaining a depth map to capture a distance at each
pixel is analogous to inventing a digital camera to capture
the color value at each pixel. The gap between low-level
depth measurements and high-level shape understanding is
just as large as the gap between pixel colors and high-level
semantic perception. Moving forward, we need a higher-
level intelligence for 3D reconstruction.

This report aims to draw the attention of the 3D recon-
struction research community to put greater emphasis on
mid-level and high-level 3D understanding, instead of ex-
clusively focus on improving of low-level reconstruction
accuracy, as is the current situation. In Section 2, we retro-
spect the history to study the different views of paradigms in
the filed that makes 3D reconstruction a complete low-level
task, apart from the view at the very beginning of 3D re-
construction research. We highlighted the point that draws
a clear difference for the field, and analyze the long-term
implication for subconscious changing in the view for 3D
reconstruction. In Section 3, we review the widely accepted
“two-streams hypothesis” model of the neural processing
of vision in human brain, in order to draw the link between
computer and human vision system. This link allows us to
conjecture recognition in computer vision to be the counter-
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part of ventral stream in human vision system, and recon-
struction to be the counterpart of dorsal stream in human
vision system. In Section 4, we provide brief survey on
some recent efforts in the community that can be regarded
as studies for 3D reconstruction beyond low level. Finally,
We highlight some recent efforts to unify recognition and
reconstruction, and argue that a new era to study 3D recon-
struction at higher-level is starting to come.

2. History and Retrospect
Physics (radiometry, optics, and sensor design) and com-

puter graphics study the forward models about how light re-
flects off objects’ surfaces, is scattered by the atmosphere,
refracted through camera lenses (or human eyes), and fi-
nally projected onto a 2D image plane. In computer vision,
we are trying to do the inverse [49], i.e. to describe the world
that we see in one or more images and to reconstruct its
properties, such as shape. In fact, the desire to recover the
three-dimensional structure of the world from images and to
use this as a stepping stone towards full scene understand-
ing is what distinguished computer vision from the already
existing field of digital image processing 50 years ago.

Early attempts at 3D reconstruction involved extracting
edges and then inferring the 3D structure of an object or
a “blocks world” from the topological structure of the 2D
lines [41]. Several line labeling algorithms were developed
at that time [29, 8, 53, 42, 30, 39]. Following that, three-
dimensional modeling of non-polyhedral objects was also
being studied [5, 2], using generalized cylinders [1, 7, 35,
40, 26, 36] or geon [6].

Staring from late 70s, more quantitative approaches to
3D were starting to emerge, including the first of many
feature-based stereo correspondence algorithms [13, 37, 21,
38], and simultaneously recovering 3D structure and cam-
era motion [51, 52, 34], i.e. structure from motion. After
three decades of active research, nowadays, we can achieve
very good performance with high accuracy and robustness,
for both stereo matching [44, 45, 55] and structure from mo-
tion [47, 48, 58, 50].

However, there is a significantly difference between
these two groups of approaches. The first group represented
by “block world”, targets on high-level reconstruction of
objects and scenes. The second group, i.e. stereo corre-
spondence and structure from motion, targets on very low-
level 3D reconstruction. For example, the introduction of
structure from motion was inspired by “the remarkable fact
that this interpretation requires neither familiarity with, nor
recognition of, the viewed objects” from [52]. It was totally
aware that this kind of 3D reconstruction at low level is just
a milestone towards higher-level 3D understanding, and is
not the end goal.

However, this message somehow got mostly lost in the
course of developing better-performing system. In the past

three decades, there are a lot more success we achieve for
the low-level 3D reconstruction for stereo correspondence
and structure from motion, than for the high level 3D un-
derstanding. For low-level 3D reconstruction, thanks to
the better understanding of geometry, more realistic image
features, more sophisticated optimization routine and faster
computers, we can obtain a reliable depth map or 3D point
cloud together with camera poses. In contrast, for higher-
level 3D interpretation, because the line-based approaches
hardly work for real images, this field diminished after a
short burst. Nowadays, the research for 3D reconstruction
almost exclusively focuses on only low-level reconstruc-
tion, in obtaining better accuracy and improving robust-
ness for stereo matching and structure from motion. People
seems to have forgetten the end goal of such low-level re-
construction, i.e. to reach a full interpretation of the scenes
and objects. Given that we can obtain very good result on
low-level reconstruction now, we would like to remind the
community and draw attention to put greater emphasis on
mid-level and high-level 3D understanding.

We should separate the approach and the task. The
less success of line-based approach for high-level 3D un-
derstanding should only indicate that we need a better ap-
proach. It shouldn’t mean that higher-level 3D understand-
ing is not important and we can stop working on it. In an-
other word, we should focus on designing better approaches
for high-level 3D understanding, which is independent of
the fact that line based approach is less successful than key-
point and feature based approach.

3. Two-streams Hypothesis :: Computer Vision
In parallel to the computer vision researchers’ effort

to develop engineering solutions for recovering the three-
dimensional shape of objects in imagery, perceptual psy-
chologists have spent centuries trying to understand how
the human visual system works. The two-streams hypothe-
sis is a widely accepted and influential model of the neu-
ral processing of vision [14]. The hypothesis, given its
most popular characterization in [17], argues that humans
possess two distinct visual systems. As visual information
exits the occipital lobe, it follows two main pathways, or
“streams”. The ventral stream (also known as the “what
pathway”) travels to the temporal lobe and is involved with
object identification and recognition. The dorsal stream (or,
“how pathway”) terminates in the parietal lobe and is in-
volved with processing the objects spatial location relevant
to the viewer.

The two-streams hypothesis remarkably matched well
with the two major branches of computer vision – recog-
nition and reconstruction. The ventral stream is associated
with object recognition and form representation, which is
the major research topic for recognition in computer vision.
On the other hand, the dorsal stream is proposed to be in-
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Human vision Computer vision Low Level Mid Level High Level
Ventral stream Recognition Color value Grouping & Alignment Semantic → Context
Dorsal stream Reconstruction Distance value Grouping & Alignment Shape → Structure
Question to answer at each level How to process signal? Which are together? What is where?

Table 1. Different levels and different streams for both human and computer vision systems.

volved in the guidance of actions and recognizing where
objects are in space. Also known as the parietal stream, the
“where” stream, this pathway seems to be a great counter-
part of reconstruction in computer vision.

The two-steams hypothesis in human vision is the result
of research for human brain. But the distinction of recog-
nition and reconstruction in computer vision rise automati-
cally from the researchers in the field without much aware-
ness. The computer vision researchers naturally separate
the vision task into such two major branches, based on the
tasks to solve, at the computational theory level.

This interesting coincidence enables us to make further
analysis of the research focuses in computer vision. For
recognition, i.e. counterpart of ventral stream, it is widely
accepted that the task can be divided into three levels, as
shown in Table 1. However, there is not separation of the
three levels for reconstruction, simply because the current
research of reconstruction exclusively focus on the low level
part only. The mid level and high level for 3D reconstruc-
tion are mostly ignored. A lot of researchers, especially the
younger generations, are not aware of the existing of the
problem.

Now, thanks to our analogy between human vision and
computer vision, we can now try to answer what are the
core tasks of three different levels of reconstruction. Since
both ventral and dorsal stream start from the primary vi-
sual cortex (V1), we can expect that the low level task for
reconstruction should be signal processing and basic fea-
ture extraction, such as V1-like features and convolution
of Gabor-like filter bank, or time-sensitive filter bank for
motion detection to infer the structure. The mid level fo-
cuses on grouping and alignment. By grouping, we mean
the grouping of pixels within the current frame for either
color of depth value, i.e. the segmentation of the image
plane into meaningful areas. This can happen in both 2D
and 3D [65, 54]. By alignment, we mean the matching of
the current input with previous exposed visual experience,
e.g. as matching of a local patch with patches in a training
set [46]. The grouping happens within the current frame,
and the alignment happens between the current frame and
previous visual experience. In both cases, the fundamental
computational task for this level is to answer “which are to-
gether?” For the high level of recognition, the task is to in-
fer the semantic meaning, i.e. the categories of objects, and
furthermore, the context of multiple objects in the scene.
For the high level of reconstruction, the task is to recognize

the shape of individual objects, and to understand the 3D
structure of the scene, i.e. the spatial relationship of objects
in the scene (a shape is on top of another shape). At the
end of computation, together with both recognition and re-
construction, or ventral stream and dorsal stream, the vision
system will produce answers for “what is where?”

4. 3D Beyond Low Level: A Modern Survey
As previously mentioned, after the “blocks world” line

of works, the community almost exclusively focuses on
low-level 3D reconstruction. Very recently, there is a new
increasing attention on the higher-level 3D reconstruction.
In this section, we briefly summarize some representative
works towards this direction.

4.1. Pre-history: Single-view 3D Reconstruction

The dominant approach of two-view or multiple-view
3D reconstruction is on the low level reconstruction using
local patch correspondences. The performance of such ap-
proach usually significantly outperforms other alternatives,
such as reasoning about the lines, because parallax is the
strongest cue in this situation. Therefore, there are very few
works on higher-level reconstruction in this domain. How-
ever, for single view image as input, because there is no par-
allax between images to utilize, many approaches are forced
to try to be smarter to reason about higher-level reconstruc-
tion task. Therefore, in this subsection, we will only focus
on the 3D reconstruction on single-view images.

Pixel-wise 3D Reconstruction: There are a line of works
on the reconstruction of pixel-wise 3D property. Using
Manhattan world assumption, Coughlan and Yuille [9] pro-
posed a Bayesian inference to predict the compass direction
from a single image. Hoiem et al. [28] used local image
feature to train classifier to predict the surface orientation
for each patches. And Saxena et al. [43] also used local
image feature to train classifier, but to infer the depth value
directly, under a conditional random field framework.

Photo Pop-up: Beyond prediction of 3D property for lo-
cal image regions, a slightly higher-level representation is
to pop-up the photos. Hoiem et al. [27] built on top of [28]
to use local geometric surface orientation to fit ground-line
that separate the floor and objects in order to pop-up the
vertical surface. This photo pop-up is not only useful for
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computer graphics application, but also introduce the no-
tion of higher-level reconstruction, by grouping the lower
level surface estimation output with regularization (i.e. line
fitting). For indoor scenes, Delage et al. [11] proposed a dy-
namic Bayesian network model to infer the floor structure
for autonomous 3D reconstruction from a single indoor im-
age. Their model assumes a “floor-wall” geometry on the
scene and is trained to recognize the floor-wall boundary in
each column of the image.

Line-based Single View Reconstruction: There is also a
nice line of works [20, 3, 4, 68] that focus on using lines to
reconstruct 3D shapes for indoor images or outdoor build-
ings, mostly based on exploring the Manhattan world prop-
erty of man-made environments. In particular, [20] de-
signed several common rules for a grammar to parse an im-
age combining both bottom-up and top-down information.

4.2. Beginning: 3D Beyond Low Level

The volumetric 3D reasoning of indoor layout marked
the beginning of 3D reconstruction beyond low level. Yu et
al. 2008 [66] inferred the 3D spatial layout from a single 2D
image by grouping: edges are grouped into lines, quadrilat-
erals, and finally depth-ordered planes. Because it aimed to
infer the layout of a room, it is forced to reason about the
3D structure beyond low level. Since then, several groups
independently started working on 3D geometric reasoning.
Lee et al. 2009 [33] proposed to recognize the three dimen-
sional structure of the interior of a building by generating
plausible interpretations of a scene from a collection of line
segments automatically extracted from a single indoor im-
age. Then, several physically valid structure hypotheses are
proposed by geometric reasoning and are verified to find the
best fitting model to line segments, which is then converted
to a full 3D model. Beyond lines, Hedau et al. 2009 [22]
made use of geometric surface prediction [28] to gain ro-
bustness to clutter by modeling the global room space with
a parametric 3D “box” and by iteratively localizing clutter
and refitting the box.

Going one step further, not only the room layout can be
estimated, we also desire to estimate the objects in the clut-
ter. Hedau et al. 2010 [23] showed that a geometric rep-
resentation of an object occurring in indoor scenes, along
with rich scene structure can be used to produce a detector
for that object in a single image. Using perspective cues
from the global scene geometry, they first developed a 3D
based object detector. They used a probabilistic model that
explicitly uses constraints imposed by spatial layout - the
locations of walls and floor in the image - to refine the 3D
object estimates.

To model the 3D interaction between objects and the
spatial layout, Lee et al. 2010 [32] proposed a parametric
representation of objects in 3D, which allows us to incor-
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Figure 1. A system [64] that unifies recognition and reconstruction
to recover semantic meaning and 3D structure at the same time.

porate volumetric constraints of the physical world. They
showed that augmenting current structured prediction tech-
niques with volumetric reasoning signicantly improves the
performance.

On the other hand, going beyond indoor scenes, we can
also reason about 3D structure for outdoor scenes. Also,
previous approaches mostly operate either on the 2D im-
age or using a surface-based representation, they do not
allow reasoning about the physical constraints within the
3D scene. Gupta et al. [18] presented a qualitative physi-
cal representation of an outdoor scene where objects have
volume and mass, and relationships describe 3D structure
and mechanical configurations. This representation allows
us to apply powerful global geometric constraints between
3D volumes as well as the laws of statics in a qualita-
tive manner. They proposed an iterative “interpretation-by-
synthesis” approach where, starting from an empty ground
plane, the algorithm progressively “builds up” a physically
plausible 3D interpretation of the image. Their approach
automatically generates 3D parse graphs, which describe
qualitative geometric and mechanical properties of objects
and relationships between objects within an image.

Following these, there are many projects (e.g. [69, 10,
31, 24]) to reconstruct the 3D at higher level, especially at
extraction of 3D spatial layout of indoor scenes, which be-
comes a very hot topic in major conferences of computer
vision.

4.3. Unifying Recognition and Reconstruction

As illustrated in Table 1, eventually, we want the com-
puter to answer “what is where?” for an image. There-
fore, we have to combine the information from the output
of recognition and reconstruction systems (or the ventral
stream and dorsal stream in human vision). All the ap-
proaches mentioned above only focus on 3D reconstruction
without any semantic meaning. We desire a system to do
both: to predict the scene category [61, 57], the 3D bound-
ary of the space, camera parameters, and all objects in the
scene, represented by their 3D bounding boxes and cate-
gories. As shown in Figure 1, Xiao et al. [64] propose a
unied framework for parsing an image to jointly infer geom-
etry and semantic structure. Using a structural SVM, they
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Figure 2. Shape Recongition: a 3D cuboid detector [63] that local-
ize the corners of all cuboids in an image. This result will enable
a robot to manipulate a cuboid-like object.

encode many novel image features and context rules into the
structural SVM feature function, and automatically weigh
the relative importance of all these rules based on training
data. This demonstrates some initial results to jointly infer
semantics and structures. For real applications, the unifi-
cation of recognition and reconstruction can also be very
useful, such as [62, 59, 56, 67].

4.4. Shape Recognition

Although higher-level 3D understanding starts with in-
door room layout estimation, it is also very important for
individual 3D object shape recognition. Very recently, there
is a line of works that emphasis on this problem. In partic-
ular, for many objects, their 3D shape can be entirely ex-
plained by a simple geometric primitive, such as a cuboid.
This is the case for most man-made structures [60, 59, 58].
Therefore, for such an image with cuboids, it would be very
useful to parse the image to detect all the cuboids. Our de-
sired output is not simply an indication of the presence of
a geometric primitive and its 2D bounding box in the im-
age as in traditional object detection. Instead, as shown in
Figure 2, Xiao et al. [63] proposed a 3D object detector to
detect rectangular cuboids and localize their corners in un-
calibrated single-view images depicting everyday scenes. In
contrast to the indoor layout based approaches that rely on
detecting vanishing points of the scene and grouping line
segments to form cuboids, they build a discriminative parts-
based detector that models the appearance of the cuboid cor-
ners and internal edges while enforcing consistency to a 3D
cuboid model. This model copes with different 3D view-
points and aspect ratios and is able to detect cuboids across
many different object categories.

Along the same line, [25, 15, 56] proposed 3D detec-
tors for some object categories, such as cars and motor-
bikes. In particular, [25] proposed a two-stage model: the
first stage reasons about 2D shape and appearance variation

due to within-class variation (station wagons look different
than sedans) and changes in viewpoint. Rather than using
a view-based model, they described a compositional repre-
sentation that models a large number of effective views and
shapes using a small number of local view-based templates.
They used this model to propose candidate detections and
2D estimates of shape. These estimates were then refined
by their second stage, using an explicit 3D model of shape
and viewpoint. They use a morphable model to capture 3D
within-class variation, and use a weak-perspective camera
model to capture viewpoint.

4.5. Human Activity for 3D Understanding

Human activity is a very strong cue for 3D understand-
ing of scenes. Very recently, there is a line of works
[19, 16, 12] pursuing this idea. [19] presented a human-
centric paradigm for scene understanding. Their approach
went beyond estimating 3D scene geometry and predicts the
“workspace” of a human, which is represented by a data-
driven vocabulary of human interactions. This method built
upon the recent work in indoor scene understanding and the
availability of motion capture data to create a joint space of
human poses and scene geometry by modeling the physical
interactions between the two. This joint space can then be
used to predict potential human poses and joint locations
from a single image.

On the other hand, [16] presented an approach which ex-
ploits the coupling between human actions and scene geom-
etry. They investigated the use of human pose as a cue for
single-view 3D scene understanding. Their method used
still-image pose estimation to extract functional and geo-
metric constraints about the scene. These constraints were
then used to improve single-view 3D scene understanding
approaches. They showed that observing people perform-
ing different actions can significantly improve estimates of
3D scene geometry.

5. Conclusion
While an image is a 2D array, we live in a 3D world.

Although 3D reconstruction has been studied for nearly
50 years, recent progress in the field exclusively focus on
very low-level reconstruction, such as recovering an accu-
rate depth map or 3D point cloud. In this report, we argue
that just like recognition, reconstruction is a task that con-
tains all low-level, mid-level and high-level representation.
We retrospect the history and analyze some recent efforts in
the community, to argue that a new era to study 3D recon-
struction at higher level is starting to come. We hope that
this report draw attention of the 3D reconstruction research
community to put greater emphasis on mid-level and high-
level 3D understanding, instead of exclusively focus on im-
proving of low-level reconstruction accuracy, to eventually
build an intellegent vision machine.
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