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Abstract

This document provides further analysis of the algorithm
proposed in the paper [5]. We first derive the algorithm
in a maximum-likelihood framework. Then, we provide an
interpretation of the algorithm as Latent Structural SVM.
Finally, we relate the algorithm to k-means and EM.

1. Introduction

There is a trade-off between the level of supervision and
the difficulty of obtaining labels. Since category labeling
is much easier than viewpoint labeling, we propose a two-
stage approach to first train the place category classification
model with supervision, then train the viewpoint model in a
second, unsupervised stage. The procedure at training time
is a two-stage process: first we use photos generated from
the panoramas to train a multi-class classifier to predict the
place category; then we train a model to predict the view-
points within each category. The procedure at test time is
also a two-stage process. First, the place category of the test
image is identified using the place category SVM. Next, the
viewpoint is predicted using the trained viewpoint SVM for
that place category (Equation 4).

For the viewpoint classification, in each place category,
assume there are m different viewpoints uniformly placed
on the range −180◦ to +180◦. We have N panoramas
{Ii}i=1...N that must be aligned to train the viewpoint pre-
dictor for that place category. We denote their−180◦ direc-
tion as corresponding to Li when they are aligned.

Furthermore, some places have two types of layouts
which are 3D mirror images of each other. For example,
in a hotel room the bed may be located to the left of the
doorway or to the right of the doorway – the spatial layout
of the room may be the same, only flipped. By giving the
algorithm the freedom to horizontally flip each panoramic
image, these two types of layout can be considered as just
one layout, and we can train a better model with better
alignment. However, in order to avoid adding an artifi-

cial symmetry structure to the data, only one of the origi-
nal panorama and the flipped panorama is allowed to par-
ticipate in the alignment. We use a binary variable Hi to
denote whether or not to flip the panorama Ii for alignment.
For each panorama Ii, we use either the original or flipped
version, depending on Hi, and then we generate m views
{Iij(Hi)}j=1...m uniformly from −180◦ to +180◦. Our
task is to align all {Ii}, i.e. find {Li} and {Hi}, by as-
signing viewpoint labels Lij ∈ {1 . . .m} to all {Iij(Hi)}.

To denote the circular ordering constraint, we define the
function

C(k, j) = r(k + j − 1), (1)

where
r(x) = mod (x− 1,m) + 1 (2)

is used to ensure circular indices. For a configuration
〈l1, l2, . . . , lm〉, we say that it satisfies the circular order-
ing constraint if and only if ∃k ∈ {1, . . . ,m}, such that
l1 = k = C(k, 1), l2 = C(k, 2), . . . , lj = C(k, j), . . . ,
lm = C(k,m). This means that it is equivalent to say that
the −180◦ direction of panorama Ii is aligned at k, and the
label for {Iij(Hi)} is Li1 = k, Li2 = C(k, 2), . . . , Lim =
C(k,m).

2. Maximum-likelihood Interpretation
For a panorama Ii, we define the joint probability of la-

bel assignment as

P (Li1, Hi, Ii|M)

=
∏

j=1...m

P (Lij = C(Li1, j), Iij(Hi)|M),

where there is only one free variable Li1 per panorama for
viewpoint orientation, to enforce the circular ordering as a
hard constraint.

During training, we are looking for the best modelM∗
in maximum-likelihood criteria

M∗ = argmaxM
∏

i=1...N

P (Ii|M) (3)

1



where {Li, Hi} are unknown latent variables.
During testing, given a normal view photo I (such as the

images in [6, 2, 7]), we obtain the viewpoint

L = argmaxj=1...mP (j, I|M∗) (4)

by using the best learned modelM∗.
Given an initial set of assignments or an initial model, we

design an iterative refinement technique for training, which
alternates between two steps:

Alignment step For each panorama in the training data
Ii, we can assign the label to maximize the joint probability〈

L
(t)
i1 , H

(t)
i

〉
= argmaxLi1,Hi

∏
j=1...m

P (Lij = C(Li1, j), Iij(Hi)|M(t)).

Because we enforce a hard constraint in PC , there are only
m non-zero solutions. Therefore, we try all of them and get
the best alignment configuration L

(t)
i1 and H

(t)
i .

Maximization step We obtain the new updated M(t+1)

by maximizing the likelihood

M(t+1) = argmaxM
∏

i=1...N

P (L
(t)
i1 , H

(t)
i , Ii|M)

= argmaxM
∏

i=1...N

∏
j=1...m

P (C(L
(t)
i1 , j), Iij(H

(t)
i )|M).

In practice, we want to make use of a powerful discrim-
inative classifier to train a strong model. We choose to
train a m-way classifier for viewpoint, using the photos
{Iij(H(t)

i )} with current label L(t)
ij . The decision values

from the trained classifier can then be transformed into
probability values by using a sigmoid function with normal-
ization [4].

The algorithm is deemed to have converged when the
alignment no longer changes. To obtain an initial assign-
ment, we could randomly assign an alignment solution to
each panorama and then proceed to the training step, thus
computing the initial model from randomly-assigned views.
However, we have found empirically that, when starting
from random alignments, the algorithm usually converges
very quickly to a bad local optima. Therefore, we bor-
row the idea from curriculum learning[3, 1]: start small,
learning easier aspects of the task or easier sub-tasks, and
then gradually increase the difficulty level. In our case, we
can control curriculum quantity, by training the model to
align just one panorama at first (a trivial case), and adding
one more panorama to the training set with every itera-
tion. Since the order in which panoramas are added affects
the final model in this scheme, we also control curriculum

difficulty by greedily choosing the panorama from the re-
maining training set that has the largest joint probability (as
defined in Equation 3), predicted using the current model
M(t). Figure 9(a) in the paper shows an example of dif-
ferent behaviors of these three schemes. With the greedily
incrementally scheme, we derive the algorithm presented in
the paper in this maximal-likelihood framework.

In practice, instead of using the raw photo I , we use pop-
ular image features. For the classifier, we use the One-
Vs-Rest Kernelized Support Vector Machine (SVM). We
have tested other classifiers, including K-nearest-neighbor,
SVM-KNN [10], N-Vs-Rest SVM, and Support Vector Re-
gression (with various methods of formulating the circular
nature of the viewpoint label values), but all gave lower em-
pirical performance than the One-Vs-Rest SVM.

3. Interpretation as Latent Structural SVM
Our model and algorithm can be interpretated as Latent

Structural SVM and Concave-Convex Procedure (CCCP)
[9], with circular ordering as additional constraints. For Iij ,
denote the scene category as yij , and {Lij , Hij} as latent
variables. With this formulation, the CCCP algorithm ap-
plied to Structural SVM with latent variables gives rise to
a very intuitive algorithm that alternates between imputing
the latent variables {Lij , Hij} that best explain the training
pair (Iij , yij) and solving the Structural SVM optimization
problem while treating the latent variables as completely
observed. These correspond to our alignment step and max-
imization step.

During the maximization step, when solving SVM while
treating latent variables as observed, viewpoint estimation
within a category could be interpreted as hierarchical scene
categorization, where scenes in a cluster only differ through
their viewpoints. There are two different ways to train the
SVM. Denote that we have n scene categories and m view-
points in each category. If we train one SVM to be a n-
way classifier to classify the scene category first, and then
train n SVMs to be an m-way classifier to classify the view-
points in each category, we obtain our proposed two-stage
approach. If we train the SVM to be a n×m-way classifier,
we can obtain a one-stage approach to train scene categories
and view points simultaneously.

In general, a one-stage approach may be preferred be-
cause it has the benefit of performing viewpoint alignment
and category classification in the same framework. How-
ever, in our case, the two-stage approach has several ad-
vantages over the one-stage approach. First of all, the two-
stage approach is several orders of magnitude faster1 than

1 The one-stage requires training n × m-way classifier in each itera-
tion. Using One-VS-All SVM, we need to train n × m × T SVMs with
(n ×N ×m)2-size kernel matrices, where T is the number of iterations
before convergence, and N is the number of panoramas in each category.
But in the two-stage approach, the scene category is independent of latent



the one-stage approach, which would take several months
to run on our dataset using a computer cluster with 12 desk-
top machines. Secondly, because we use non-linear kernel-
ized SVM, the SVM is usually able to represent different
categories quite well with non-linear decision boundaries.
Finally, the visual differences between place categories are
generally high in our dataset, while the visual differences
between different viewpoints in the same place category are
low. Therefore, in a One-Vs-Rest SVM, if we use the one-
stage approach to train a binary SVM to classify one view
versus all other views in all categories, the support vectors
for the negatives near the decision boundaries are usually
photos with the same place category as the positive exam-
ple. This means that the training is almost equivalent to the
two-stage approach, which uses only photos from the same
category for viewpoint training.

4. Relation to k-means and EM
Our algorithm is related to k-means, Expectation-

Maximization (EM) and Affinity Propagation [8] algo-
rithms, where the “alignment step” corresponds to the as-
signment or expectation step, and the “maximization step”
corresponds to the update in k-means or the maximization
step in EM. However, our algorithm is significantly more
powerful than k-means and EM. In contrast to these, same
as [6], we use a powerful SVM as the discriminative classi-
fier, a state-of-the-art non-linear histogram intersection ker-
nel with vector quantization to get visual words, multiple
kernel combination with linear weighted sums, and a care-
fully designed learning scheme to greatly boost the perfor-
mance.
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