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Abstract

Traditional eye tracking requires specialized hardware,
which means collecting gaze data from many observers is
expensive, tedious and slow. Therefore, existing saliency
prediction datasets are order-of-magnitudes smaller than
typical datasets for other vision recognition tasks. The
small size of these datasets limits the potential for training
data intensive algorithms, and causes overfitting in bench-
mark evaluation. To address this deficiency, this paper in-
troduces a webcam-based gaze tracking system that sup-
ports large-scale, crowdsourced eye tracking deployed on
Amazon Mechanical Turk (AMTurk). By a combination of
careful algorithm and gaming protocol design, our system
obtains eye tracking data for saliency prediction compa-
rable to data gathered in a traditional lab setting, with
relatively lower cost and less effort on the part of the re-
searchers. Using this tool, we build a saliency dataset for
a large number of natural images. We will open-source our
tool and provide a web server where researchers can upload
their images to get eye tracking results from AMTurk.

1. Introduction

An understanding of human visual attention is essential
to many applications in computer vision, computer graph-
ics, computational photography, psychology, sociology, and
human-computer interaction [31, 12]. Eye movements pro-
vide a rich source of information into real-time human vi-
sual attention and cognition [4], and the development of
gaze prediction models is of significant interest in computer
vision for many years. However, gaze prediction is difficult
because the complex interplay between the visual stimulus,
the task, and prior knowledge of the visual world which
determines eye movements is not yet fully understood [7].
Recently, the availability of eye tracking devices and ma-
chine learning techniques opens up the possibility of learn-
ing effective models directly from eye tracking datasets.
[26, 23, 18] demonstrated that eye tracking datasets on a
larger scale are critical to leverage the power of machine
learning techniques and greatly improve the performance of
visual attention models. However, building large databases

Figure 1. We propose a webcam-based eye tracking system to
collect saliency data on a large-scale. By packaging the eye
tracking experiment into a carefully designed web game, we are
able to collect good quality gaze data on crowdsourcing platforms
such as AMTurk.

of eye tracking data has traditionally been difficult, typi-
cally requiring bringing people into a lab where they can be
tracked individually using commercial eyetracking equip-
ment. This process is time-consuming, expensive, and not
easily scaled up for larger groups of subjects.

In this paper, we address this deficiency by designing
a webcam-based eye tracking game for large-scale crowd-
sourcing on Amazon Mechanical Turk (AMTurk) as shown
in Figure 1. We designed our system around the follow-
ing criteria: ubiquitous hardware, ease of set-up, sufficient
quality for saliency data collection, and real-time perfor-
mance. The challenges in developing such a system include
arbitrary lighting and other environmental conditions for the
subject, and the need for performing the bulk of the tracking
and related computation on limited and varying hardware
available on the subject’s computer.

The contributions of this work include building a robust
tracking system that can run in a browser on the remote
computer, design and evaluation of two game scenarios that
motivate the subjects to provide good gaze data, a frame-
work that supports experiments of this kinds, and a large
database of gaze data. We also show that our system obtains
eye tracking data from AMTurk with satisfactory accuracy
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compared with the data gathered in a traditional lab setting,
but at a lower cost and with little effort from the researchers.

2. Related work

In this section, we briefly review existing computer vi-
sion algorithms for eye tracking and some recent methods
for collecting crowdsourced saliency data. We also describe
the exisiting eye tracking datasets and stimuli.

2.1. Computer vision based eye tracking

There exist two main categories of computer vi-
sion based gaze prediction methods: feature-based and
appearance-based methods [11]. Feature-based methods
extract small scale eye features such as iris contour [38],
corneal infrared reflections and pupil center [35] from
high resolution infrared imaging, and use eyeball model-
ing [10] or geometric method [42] to estimate the gaze di-
rection. This approach requires a well-controlled environ-
ment and special devices such as infrared/zoom-in cam-
eras and pan-tilt unit [25]. In addition, the accuracy de-
pends heavily on the system calibration. On the other hand,
appearance-based methods use the entire eye image as a
high-dimensional input to a machine learning framework
to train a model for gaze prediction, so the image from a
standard camera or webcam is sufficient.

Several appearance-based methods that assume a fixed
head pose have been proposed. Tan et al. [34] used a
manifold model with densely sampled spline (252 calibra-
tion points). Williams et al. [39] proposed a Gaussian
process regression to reduce the number of required sam-
ples. Lu et al. [21] introduced an adaptive linear regres-
sion method which only requires sparse samples (9-33 cal-
ibration points) and achieves a fairly high accuracy. How-
ever, as mentioned in Section 1, small head movements in-
evitably lead to a drift of gaze prediction during the exper-
iment. A few solutions have been reported, but most re-
quire additional calibration. Lu et al. [20] suggested learn-
ing a compensation for the head pose change by recording
a video clip during calibration, but this requires nearly 100
training images from different head poses. Lu et al. [22]
proposed using synthetic training images for varying head
poses, but this still requires users to move their heads ver-
tically/horizontally to capture more reference images after
gazing at 33 calibration points. These tedious additional
calibration procedure makes a direct application of these
methods to crowdsourcing very difficult.

2.2. Crowdsourced saliency

The possibility of crowdsourcing human attention data
has been an increasing popular topic in recent years, and
a few methods exist. The current methods are alternatives
to standard eyetracking: they do not collect real-time gaze

data, but instead collect proxy data which can be used to
train saliency models.

Rudoy et al. [28] asked participants to watch a clip of
video, immediately followed by a briefly-displayed charac-
ter chart, and asked participants to self-report their gaze lo-
cation by giving the letter and number symbols which they
had seen most clearly. Although the accuracy of this ap-
proach is comparable to data collected in-lab by an eye
tracker, only a single fixation can be obtained in each self-
report. Frame-by-frame eye tracking of an entire video clip
seems infeasible, and it is unclear if this system could be
used to collect scan paths on static images.

Recently, Jiang et al. [13] designed a mouse-contingent
paradigm to record viewing behavior. They demonstrated
that the mouse-tracking saliency maps are similar to eye
tracking saliency maps based on shuffled AUC (sAUC)
[44]. However, mouse movements are much slower than
eye movements, and the gaze pattern of individual viewers
in mouse and eye tracking systems are qualitatively differ-
ent. It is not clear that if the ”fixations” generated from
mouse tracking match those obtained from standard eye
tracking (the authors propose extracting fixations by exclud-
ing half samples with high mouse-moving velocity, but this
leaves up to 100 fixations per second, far different from the
approximately 3 fixations/second observed in standard eye
tracking data). Furthermore, since mouse movements are
slower than eye movements, it’s unclear if this approach
will work for video eye tracking, or if it can be used in psy-
chophysics experiments which require rapid responses.

Finally, general image labelling tools such as LabelMe
[29] can be used to identify salient objects and regions in
images by crowdsourcing. This provides valuable data for
developing saliency models, but is not a substitute for real-
time eye tracking.

2.3. Eye tracking datasets

In-lab eye tracking has been used to create data sets of
fixations on images and videos. The data sets differ in sev-
eral key parameters [5], including: the number and style of
images/video chosen, the number of subjects, the number
of views per image, the subjects distance from the screen,
eye trackers, the exact task the subjects were given (free
viewing [16], object search [26], person search [9], image
rating [37] or memory task [15]), but each helps us under-
stand where people actually look and can be used to mea-
sure performance of saliency models. The majority of eye
tracking data is on static images. The most common task is
free viewing which consists of participants simply viewing
images (for 2-15 seconds) or short videos clips [24] without
no particular task in mind.

Two widely-used image datasets are the Judd dataset
which contains 1003 natural images free-viewed by 15 sub-
jects each [15] and the NUSEF dataset [27] which includes



758 (emotion evoking) images free-viewed by 25 subjects
each. There are other datasets focused on specific domains:
PASCAL-S [19] offers both fixation and salient object seg-
mentation; OSIE [41] features in multiple dominant objects
in each image; and the MIT Low Resolution dataset [14]
contains low resolution images. Building these databases
typically involves a trade-off between number of images
and number of human observers per image. The POET
database [26] is currently the largest database in terms of
images (6270), but each image is only viewed by 5 subjects
performing a visual search task for one second.

3. Large-scale crowd-sourcing eye tracking
In this section we first review main challenges for col-

lecting a large eye tracking dataset via crowdsourcing.
Next, we describe our platform and the experiment setup.

3.1. Design considerations

Experiment environment. Unlike a lab setting, the
crowdsourced worker’s environment is uncontrolled. Rel-
evant factors that need to be considered include lighting,
head pose, the subjects distance from the screen, etc.

Hardware. Although our system only requires a HD
webcam and a modern web browser, there are still a number
of workers who cannot meet the hardware requirements due
to a low computational speed of the web browser or a low
sample rate of a webcam. These workers must be detected
and screened out.

Software and real-time performance. Although there
is some previous work on webcam based gaze prediction,
none of these approaches have been implemented in a web
browser. We desire a web-ased system that can make eye
predictions in real time. This would allow us to: 1) provide
online feedback, which is critical to attract and engage sub-
jects; 2) avoid making a video recording of our participants,
which protects their privacy. Since modern web browsers
have limited computational resources, this requires a sim-
ple algorithm and an efficient implementation.

Head movement. In a traditional lab set-up, a chin rest
is used to fix the position of a participant’s head, but this
is inpractical to enforce during crowdsourcing. Gaze pre-
diction algorithms that work well with a fixed head perform
significantly worse when the head is not stationary. This
is because head movements cause the appearance of the eye
regions to change so drastically that they cannot be matched
to the data recorded during calibration even if they corre-
spond to the same gaze position [33].

Lack of attention. Whether the eye tracking participants
can focus with their full attention on the task directly deter-
mines the quality of the data gathered. This is a real chal-
lenge for crowdsourcing. Therefore, users must be given
clear instructions and the experiment procedure must be de-
signed to be fun and engaging.

3.2. Webcam based gaze prediction algorithm

Based on these considerations, this section introduces
our method for eye tracking, while Section 3.3 proposes a
gaze data collection procedure in the form of a game.

Facial landmark tracking & eye region extraction.
To track facial landmarks we used the JavaScript package
clmtrackr [1], which implements constrained local mod-
els fit via regularized landmark mean-shift, as described in
[32]. The estimation of facial landmarks suffers from visi-
ble jittering due to small head movements and optimization
challenges, so we further stabilized these landmark loca-
tions by temporal smoothing using a Kalman filter. From
each video frame, we used the location of eye corners and
eyelids as reference points for rectangular eye region align-
ment and extraction. We set a minimum value of the size
of the eye image and of the average intensity to ensure that:
(1) the subject is not too close or too far from the camera;
(2) the resolution of eye image is sufficient; and (3) the sub-
ject’s eyes are well lit.

Calibration. Our system trained a user-task specific
model for gaze prediction, which means that to obtain train-
ing data, in each experiment session the user was requested
to gaze at certain positions (calibration points, shown in
Figure 3) on the screen. Users stared at each point for
1 second; to ensure a stable eye position we used only
the last several frames from each point to train the model.
For the eye images corresponding to each calibration point,
we computed the Zero mean Normalized Cross-Correlation
(ZNCC) between each image and their average. Eye im-
ages with low ZNCC value were classified as blinks and
discarded. We used the remaining frames to train the gaze
prediction model. In our experiments, we set the threshold
to be 95% of the largest ZNCC.

Gaze prediction. A typical size of the eye images is
40×70 pixels, so the dimensionality of a pixel-wise feature
vector can reach into thousands of dimensions. With sparse
samples of gaze positions for training, a high-dimensional
feature can easily overfit, so instead we adopted a similar
approach as Lu et al. [21]. We rescaled each eye image to
6× 10 and then performed histogram normalization, result-
ing in a 120-D appearance feature vector for both eyes.

To achieve real-time performance for online applica-
tions, we use ridge regression (RR) to map the feature vec-
tor to a 2-D location on the screen. In a subsequent offline
step after the experiment is finished, we retrain the model
using support vector regression (SVR). For our experiments
we use a Gaussian kernel and C-SVC [8].

3.3. Game design for crowdsourcing

As discussed in Section 3.1 the uncontrolled setting
through the AMTurk platform makes the data collection of
eye tracking with webcams an extremely difficult task due
to issues such as bad lighting, large head movement, lack



Figure 2. An example of the saliency data obtained by our sys-
tem. In a free-viewing task, users were shown selected images
from the SUN database with fully annotated objects. From the
raw eye tracking data, we used the proposed algorithm to estimate
fixations and then computed the saliency map. This map could be
used to evaluate the saliency of individual objects in the image.

of attention to both calibration and assigned tasks, and so
forth. Due to these deployment issues, the design and im-
plementation of both the user experience and the user inter-
face are not trivial but are crucial to this task.

3.3.1 Quality control for prediction accuracy

Our early prototypes showed that by using the procedure
mentioned in Section 3.2 with only calibration and image
viewing, the majority of submitted work did not give a sat-
isfactory result. After scrutinizing each video of eye im-
ages, we discovered that the gaze prediction may fail due to
a variety of reasons such as head movement, head pose, bad
lighting, unsupported browser features, low computational
speed, and low memory capacity. The primary cause of
failure is head movement, which is our main concern when
making design decisions. Instead of explicitly allowing free
head pose as some previous works [20], we instruct the user
to stay as still as possible by supporting their head on their
arms, books or the back of a chair. In addition, we proposed
two design possibilities to deal with this issue: 1) check and
recalibrate frequently; 2) use an extremely short task.

As shown in Figure 3, in each experiment, we provided
multiple (N) sessions of calibration sandwiching N-1 ses-
sions of photo viewing. At the end of each session, a new
model was trained from all the data collected to that point,
to give an updated online gaze prediction. After each cali-
bration session, we inserted a validation stage when the user
was asked to gaze at certain positions, and we checked the
online prediction to ensure high-quality tracking results.

Occasionally subjects missed a few calibration points,
which results in an inaccurate model that substantially de-
viates from the average case. In order to reject outliers,
we partitioned the training samples into N folds based on
their calibration session and conducted N-fold cross valida-
tion. Then we grouped samples corresponding to the same
gaze position across all folds and discarded those with large

leave-one-out error. The dropout rate was set to 100/N%,
which allowed to reject at most the entire set of samples cor-
responding to a certain calibration point. Finally, we used
all selected frames to fit a refined model by SVR.

An alternative to frequent recalibration is to keep tasks
short (under a minute); in this case, it is less likely that the
user will unintentionally move their head. For example, in
a free viewing task, a typical viewing time per image is 3-5
seconds, so it is easy to make the task short by only showing
a small number of images. In this case, we used only one
calibration but still add a validation stage to detect failure
cases.

Next, we briefly discuss how we dealt with other possible
causes of failures. 1) For head pose, we instructed the user
face forward to the screen. Before starting each experiment,
we estimated the approximate jaw, pitch and yaw based on
the position of facial landmarks. If we detected that the
face pose was not frontal, we asked the user to change the
pose accordingly. During the experiment, the system would
restart if a large head movement was detected. 2) For light-
ing, we suggested the user sit in a well-lit area with their
face lit from the front. We computed the average intensity
of eye regions and asked the user to adjust lighting con-
ditions if the average intensity was below a threshold. 3)
For hardware support, we conducted a system check to test
the resolution of the webcam (at least 1080 × 720p) and
the frame rate of recording (at least 25 fps) when the fa-
cial landmark tracking was running. Only individuals who
passed the system check could continue the experiment.

3.3.2 Quality control for attention

For free viewing tasks, we provided a memory test to mo-
tivate the subjects to pay attention to the images as in [15]:
we showed 15 images arranged on a grid and asked them to
indicate which M images they had just seen. We chosed M
to be 1 – 3 depending on the experiment configuration.

We observed some cases where subjects did not appear to
be viewing images normally, even though this was empha-
sized in the instruction. Therefore, without screening the
results, the average AMTurk saliency map has a stronger
center bias than the in-lab data. To deal with this issue, we
added images from Judd dataset as a benchmark to evaluate
subjects performance. These images were selected to have
low entropy saliency maps with one salient object far from
the center.

Eye tracking is not an everyday experience for most of
the workers on AMTurk, so proper feedback to assure the
subjects that the eye tracking is functioning well is impor-
tant to get them engaged into the experiment. After each
calibration session, we displayed the online prediction in
the context of a game, which we will discuss more details
in Section 3.3.3.



Figure 3. The procedure for an eye tracking experiment. 13-point calibration and validation were performed at the start of each session.
During the calibration, we trained a user-task specific model for gaze prediction. For validation, we displayed the online gaze prediction
results in the context of a game to make sure that the tracking was functioning properly. Our system supports various stimuli (such as
image or video) and various tasks (such as free viewing, image memory, or object search).

3.3.3 Game interface

We designed two game interfaces for collecting eye track-
ing data on a crowdsourcing platform as shown in Figure
3. The basic idea is to fit our experiment into the storyline
of well known games and provide real-time feedback to 1)
leverage the impact of these games to attract more workers;
2) encourage them to work more carefully; and 3) integrate
the quality control to the experiment naturally.

Theme one: Angry Birds [2]. In the original video
game, players use a slingshot to launch birds at pigs sta-
tioned in or around various structures with the goal of de-
stroying all the pigs on the playing field. For this experi-
ment, we used a calibration pattern with 13 points. During
the calibration, instead of showing red dots on the screen
as in a traditional eye tracker, we popped bullets (birds in
Figure 3) sequentially according to the calibration pattern
with sound effect and asked the subject to carefully check
each one of them in order to train a powerful gun controlled
by gaze. Next, during the validation, we showed a target
(pig in Figure 3) at a random location on the screen, dis-
played the gaze prediction results obtained from the online
model as a crosshair, and asked the subject to use their gaze
to shoot the target. If they successfully focused their gaze
on the target for a sufficient number of time, they were able
to “kill” the target, earn bonus points, and move on to the
next stage. We used this theme for our longer experiments,
so a multistage calibration and memory test were also used.

Theme two: Whac-A-Mole [3]. In the original mechan-
ical game, moles will begin to pop up from their holes at

random, and players use a mallet to force them back by hit-
ting them on the head. For this interface, we used a simpler
calibration pattern with 9 points. After collecting mallets
during calibration, we asked the user to stare at the moles
to force them back into their holes. We used this theme for
short experiments, with less number of calibration sessions
and less number images for free viewing.

We included these two interfaces to maximize the usage
of the crowdsourcing resource. The first theme allows us
to provide more accurate online gaze prediction, but it re-
quires subjects to keep their head very still and carefully
maintain their gaze on the calibration and validation points.
Subjects who failed to control the crosshairs to kill this pigs
in time would get frustrated and leave the experiment, so
the higher accuracy came at a cost of slower data collec-
tion. Therefore, we also used the Whac-a-Mole task which
is extremely short (less than 30 seconds) and easy to play.
The validation step in this task is easier for subjects to pass
– instead of displaying the exact online gaze prediction, we
only use the rough location to mark which mole hole they
are targeting. This gives subjects feedback that the track-
ing is working and lets them feel that they have control of
game. After they finish the experiment, we then refine the
prediction results offline. Although in each experiment we
collected less number of images, it drastically increased the
rate of successful completion of our task as well as the pop-
ularity of our tasks among workers, and we were still able
to use the benchmark images to screen results. In practice,
we published both games on AMTurk and let the workers
choose which one they would like to do.
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Figure 4. An example of the dynamic saliency maps for video
clips collected by our system. Saliency in video is highly depen-
dent on the context of the previous frames, so dynamic saliency
maps look very different from the static saliency maps obtained
for the same frames shown in isolation as part of a free-viewing
task.

3.4. Experiment setup

Stimuli. The bulk of our experiments focus on collecting
gaze data for natural images (Figure 2). However, our sys-
tem easily generalizes to other stimuli such as video (Fig-
ure 4) and panoramic imagery (Figure 6). More examples
are shown in supplementary material.

Protocol. We implemented our system in Javascript and
it runs by a web browser in full screen mode. In each photo
viewing session, we showed 4-10 images depending on the
workers performance in previous experiments in the Angry
Bird interface and 1-2 images per session in the Whac-a-
mole interface. We scaled images to be as large as possi-
ble in the full screen mode while keeping their aspect ratio.
Each image was presented for 3.5 seconds separated by 0.5
seconds of a black background with a blue fixation cross in
the center of the screen and a number indicating the number
of images left.

Data processing. A standard method to extract fixations
is to detect saccade onset using a velocity and/or acceler-
ation threshold; other methods using temporal or spatial
thresholds have been propsed ([30]). However, accelera-
tion/velocity thresholds do not reliably detect saccades in
our system because of the relatively low sample rate, so in-
stead we used meanshift clustering in the spatio-temporal
domain (i.e., [x, y, t] with a kernel of size [32, 32, 200]).
We treat clusters with at least 2 samples as fixations and
use cluster center as the fixation x, y location. For analy-
sis, we discarded the first fixation from each scan path to
avoid adding trivial information from the initial center fixa-
tion as [15].

Cost analysis and subject statistics. We published the
experiment on AMTurk and paid $0.4 for a 4-min Angry
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Figure 5. Statistics of basic information for workers from AM-
Turk. The data is obtained from 200 randomly-selected workers
who participated our eye tracking experiment.

Figure 6. An example of a center-bias-free saliency map for
a panoramic image collected by our system. We uniformly
sampled overlapping views from the panorama, projecting each
to a regular photo perspective, and collected gaze data for each
projection. We then projected the saliency maps back onto the
panorama and averaged saliency for overlapping areas. This gives
a panoramic saliency map with no photographer bias.

Bird task and $0.05 for a 30-sec Whac-a-mole task(resulting
in an hourly payment of $6). For an experiment with 20
images in the free viewing session, we are able to gather
300 images for an one-hour of work and pay $0.02/image.
Figure 5 shows the basic demographic statistics and the dis-
tribution of geolocation of 200 randomly-sampled subjects
who participated in our task.

4. Evaluation
We evaluated the performance of our system by: 1) the

accuracy of gaze prediction, and 2) the quality of fixation
estimation and saliency maps.

4.1. Gaze prediction accuracy

We evaluated the accuracy of gaze prediction by asking
users to perform two tasks: 1) gaze at uniformly sampled
positions on screen; 2) free view natural images. Three ob-
servers (including an author) performed the tasks while be-
ing simultaneously tracked by our algorithm (using a Log-
itech HD C270 webcam) and a commercial eyetracker (Eye-
link 1000). Users were seated in a headrest 56 cm away
from a 26.5 × 37 cm CRT monitor with a resolution of 768
× 1024 pixels and refresh rate of 100 Hz. Nine-point cal-
ibration and validation were performed at the start of the
session and after every two blocks of hits; mean error was
0.33 ◦ (9.1 pixels).

To systematically evaluate the accuracy of different lo-
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Figure 7. Gaze prediction accuracy evaluated by a 33-point
chart. The radius of each dot indicates the median error of the
corresponding testing position of one experiment for one subject.
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Figure 8. Gaze prediction error during image free viewing. On
the left, the red curve shows the eye position recorded by the Eye-
link eye tracker operating at 1000 Hz, and the green squares indi-
cate the predictions of our system with a 30 Hz sample rate. On
the right is predicted gaze in the x and y direction over time.

cations on the screen, we uniformly sampled 33 positions.
Each point was shown for 1.5 seconds, and the last 0.5 sec-
ond was used for evaluation. Figure 7 illustrates the result
tested on one subject, the radius indicates the median error
by our approach. The median error is 1.06 ◦ which is com-
parable to the state-of-the-art webcam based gaze prediction
algorithm [21].

Because different stimuli and tasks trigger different
viewing behaviors, in addition to testing on fixed positions
on the screen, we also compared the scan path predicted by
our system with the one provided by the Eyelink 1000. Fig-
ure 8 illustrates the estimated errors on both x and y direc-
tions when a subject was freely viewing an image from Judd
dataset. The sample rate of the web camera is set to 30fps,
while the Eyelink 1000 samples gaze position at 1000 Hz,
so we interpolated the tracking results from the Eyelink and
calculated the error at time stamps when the webcam based
gaze prediction is available. The average error is 1.32 ◦

across 4 images from Judd dataset and three subjects.
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Figure 9. Performance of the meanshift fixation detection algo-
rithm. We ran the proposed fixation detection algorithm on 1000
randomly-sampled Judd images, for various kernel sizes, and eval-
uated it using the median position error, mean precision, recall and
F-score.

Figure 10. Meanshift fixation detection results on two Judd im-
ages. On left is the noisy, subsampled gaze data used for testing.
On right are the detected fixations. Red circles indicate ground
truth (detected in 240Hz data using code provided by Judd et al.)
and yellow crosses indicate fixations detected in the noisy 30Hz
data using our meanshift approach.

4.2. Fixation estimation and saliency maps

Raw gaze data includes fixations (stable gaze on one
point in the image) and saccades (rapid eye movements
from one fixation point to the next). Typically, only fixation
points are used to test saliency models. We evaluated our
data quality by using the raw gaze data from Judd et al. [15].
We selected 1000 random subject/image pairs, and obtained
ground truth fixation locations using their published code.
We then simulated webcam tracking by subsampling their
data at 30 Hz and adding Gaussian position noise (σ = 10
pixels). We extracted fixations from the 30 Hz data using
our meanshift algorithm and compared our detection results
to the ground truth fixations. The results on two Judd Im-
ages are presented in Figure 10. Median position error,
mean precision, recall, and F-score for various kernel sizes
are also shown in Figure 9. Our proposed algorithm pro-
vided a satisfactory estimation of fixations. Furthermore,
we compared the distribution of fixations presented in [15]
with the one we collected on AMTurk (Figure 11).

We also evaluated the agreement between the fixation
data from our system and the ground truth fixation data on
the Judd dataset. For each image, we computed a ground
truth saliency map using fixation data from 14 of the 15
subjects, then calculated the leave-one-out AUC by predict-
ing the remaining Judd subject or a single AMTurk subject.
The result is shown in Figure 12. We repeated this process
for all of the AMTurk subjects on each image (average 6.7
subjects/image), using a different random Judd subject for



Fixations from Judd et al. (2009) Fixations from AMTurk workers

Figure 11. Distribution of fixations collected in the lab and on
AMTurk. Each distribution consists of 10,000 randomly-selected
fixations on Judd images (the initial, central fixations were not in-
cluded). Fixations captured by our method tended to be more cen-
tral than those captured in the traditional setup.
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Figure 12. Leave-one-out AUC for saliency prediction. We pre-
dicted a single Judd or AMTurk subject’s fixations with a ground
truth saliency map built from 14 Judd subjects’ fixations.

each comparison. We removed the initial, central fixation
on each image. Average AUC for various levels of map blur
via various metrics are shown in Figure 12. In general, AM-
Turk subjects are not predicted by the ground truth saliency
map as well as Judd subjects are. This may reflect the higher
positional noise in the AMTurk data and demographic dif-
ference between the AMTurk and Judd subject pools.

We further used the AMTurk fixation data as a saliency
map to predict the 15 Judd subjects and compared these re-
sults with the state-of-the-art saliency algorithms. As shown
in Figure 13, the AMTurk saliency map is similar to top per-
forming models by various AUC metrics.

5. iSUN: A large dataset for natural scenes

We used our tool to construct a large-scale eye track-
ing dataset. We selected natural scene images from the
SUN database [40] – the standard dataset for scene under-
standing. We selected 20,608 images from SUN database
with full object/region annotations and recorded eye track-
ing data from subjects free viewing these images. At the
time of submission, we have obtained saliency maps for all
images, with an average of 3 observers per image. Table 1
shows a brief comparison between iSUN and several other
eye tracking datasets, and Figure 14 shows the top 30 most
salient object categories. We will continue collecting data
on more images with the same protocol.
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Figure 13. Average AUC for saliency prediction. We compared
the saliency map based on AMTurk subjects’ fixations to various
state-of-the-art computer models of saliency[36, 43, 15] and the
Judd inter-subject-agreement baseline.

Dataset Images Subjects Semantics Categories Objects Annotaions
iSUN 20608 3 scene 397 2333 classes Fully

SalObj[19] 850 12 object - 1296 Fully
MIT[15] 1003 15 Flickr & LabelMe 2 - -

NUSEF[27] 758 25.3 human & reptile 6 - -
Toronto[6] 120 20 scene 2 - -
Koostra[17] 101 31 - 5 - -

Table 1. Comparison between iSUN and several other free-
viewed image datasets. Our iSUN database is by far the largest in
terms of number of images. The iSUN images are fully-annotated
scenes from the SUN database.
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Figure 14. Object saliency statistics. For each image, we thresh-
old the saliency map to create a binary map that selects N% of
the image. We then compute the average overlap between the
thresholded saliency map and a binary mask for a particular object
category. For example, if there is a head in an image, on aver-
age the head area will have around 0.45 overlap with the top 5%
most salient image area. The bottom rows show example objects
cropped from our images, with a binary mask representing the top
5% most salient region.

6. Conclusions
In this paper, we present a webcam based system for

crowdsourced eye tracking data collection from Amazon
Mechanical Turk. We demonstrate its effectiveness by com-
paring it to the gaze data obtained from commercial eye
trackers. We use our approach to obtain free-viewed eye
tracking data for a large number of natural scene images.
Our system can be also easily generalized to various types
of visual stimuli and tasks for eye tracking experiments. We
believe that the proposed system will be a useful tool for the
research community to collect large-scale eye tracking data
on a variety of tasks.
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