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Abstract

The state-of-the-art visual recognition algorithms are all data-hungry, requiring
a huge amount of labeled image data to optimize millions of parameters. While
there has been remarkable progress in algorithm and system design, the labeled
datasets used by these models are quickly becoming outdated in terms of size. To
overcome the bottleneck of human labeling speed during dataset construction, we
propose to amplify human effort using deep learning with humans in the loop. Our
procedure comes equipped with precision and recall guarantees to ensure labeling
quality, reaching the same level of performance as fully manual annotation. To
demonstrate the power of our annotation procedure and enable further progress
of visual recognition, we construct a scene-centric database called “LSUN” con-
taining millions of labeled images in each scene category. We experiment with
popular deep nets using our dataset and obtain a substantial performance gain
with the same model trained using our larger training set. All data and source
code will be available online upon acceptance of the paper.

1 Introduction

High capacity supervised learning algorithms, such as deep convolutional neural networks [9, 8],
have created a discontinuity in visual recognition over the past three years, and continue to push the
state-of-the-art performance to the next level (e.g. [6, 17, 7]). These models usually have millions
of parameters which results in two consequences. On the one hand, the many degrees of freedom of
the models support the extremely impressive description power; they can learn to represent almost
any complex function and transformation automatically from the data. On the other hand, to search
for the optimal settings for a large number of parameters, these data-hungry algorithms require a
massive amount of training data with human-produced labels.

Although there has been remarkable progress in improving the algorithms (e.g. [6, 13]) or high
performance computing systems (e.g. [17]) to train these models, there is little progress on pushing
forward the data construction efforts to the next level. The ImageNet dataset [3], used by most of
these algorithms, is six years old and has been heavily overfitted (e.g. the overfitting scandal on
ImageNet [1]). The number of parameters in many deep models has exceeded the number of images
on ImageNet, stretching the performance under the risk of the lack of bounded constraints [14, 10, 5].
Another dataset that recently came out, Places [19] for scenes (ImageNet is mostly for objects), is
not much larger than ImageNet. While the models are getting deeper (e.g. [12, 13]) and the number
of parameters is increasing, the size of the datasets for training and evaluation is not increasing, but
rather lagging behind and hindering further progress of large-scale visual recognition.

It is not easy, however, to build a much bigger dataset than ImageNet or Places because of the con-
straints of human labeling effort. The construction of ImageNet and Places both required more than
a year of human effort via Amazon Mechanical Turk (AMT), the largest crowd-sourcing platform
available on the Internet. If we are looking for a N -times bigger dataset, it will require more than
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N years of human annotation, which will not scale quickly enough to support the progress of deep
visual learning. Clearly, we have no choice but to introduce a certain amount of automation in this
process, in order to let data annotation catch up with the growth of deep models. However, because
this annotation will be used to train and evaluate new models, we need to be extremely cautious to
ensure the accuracy of the labels obtained (semi-)automatically. Furthermore, humans make mis-
takes quite often, especially when performing repetitive and tedious jobs, such as data labeling.
Thus, a systematic way to check human labeling accuracy is a necessity.

In this paper, we introduce an integrated framework using deep learning with human in the loop to
annotate large-scale image data. We focus on interface design, procedures for checking for human
annotation, as well as labeling propagation to amplify human effort automatically. Our procedure
has precision and recall guarantees to ensure labeling quality, reaching the same level of perfor-
mance as fully manual annotation.

To demonstrate the power of our annotation procedure and enable further progress of deep visual
learning, we have construct a scene-centric database called “LSUN” with millions of labeled images
in each scene category. We experiment with a popular deep learning model (AlexNet [8]) using
our dataset and obtain a substantial performance gain with the same model trained using our bigger
training set. We will continue to annotate more data through our platform, and we expect to obtain
a dataset 100× bigger than ImageNet or Places within a year with a comparable budget.

1.1 Related Works

There have been several existing datasets focusing image classification tasks on objects [4, 3] or
scenes [18, 19]. They have make possible learning feature representation. Although there are several
million images in those datasets, there aren’t many images in each category, which leads to low
dataset density. To conquer this problem, people have been using various techniques to augment the
datasets [17]. However, the learned representation still has all kinds of weird phenomenon [14, 10]
when the input is slightly perturbed. Our dataset is aimed to be more than 10 times bigger than
PLACES [19] and hundreds times than ImageNet [3] for each category, so it has much higher data
density.

To construct such as large dataset, we have to label billions of images, which is not feasible for
human computation. So we design a pipeline that can combine machine and human efforts. The
pipeline has to be accurate, practical and fast. People have looked at this problem from an active
learning perspective [11, 15, 2]. The key idea of active learning is to achieve greater machine
learning model accuracy with less training labels. For more thorough review, please refer to [11].

Our pipeline is similar to active learning, but with a few key differences. First, we aim to collect
the data without algorithm bias instead of learning a model, which is different from the goal of the
most active learning algorithms that aims to learn the same model with less/least data. Second, our
task is also easier in the sense that it is acceptable to overfit a model to adapt locally to the current
target subset of images for splitting, without considering generability outside this set. And in each
iteration, we remove the positive and negative data that are confidently identified and the images to
split are shrinking in each iteration, so that the classifier in later iteration doesn’t need to generalize
to these identified data as well, but focusing on splitting the remaining data only. Last but not least,
the primary goal of our project is on the construction a massive-scale image data set, and we tail
every step to this practical goal, polishing every design details, including image crawling, duplicate
removal, interface design, human quality control, etc.

2 Large-scale Dataset Construction

To build a large-scale image database, we have to acquire a large number of images for each scene
category from the Internet to start with. As with the previous works, we turn to existing image
search engine to avoid crawling the Internet by ourselves. Currently, all of our image URLs are
from Google Images search. We use a technique based on scene adjective queries and synonyms to
overcome image limit of each search query and we are able to obtain nearly 100 million URLs to
relevant images for each query.
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(2) Interface design & Human labelling

95% Precision 99% Recall

(3) Train classifier: 
Deep learning & SVM

(1) Random samples 
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Figure 1: The overview of our pipeline. To annotate a large number of unlabeled images, we first
randomly sample a small portion (1), and label them on Amazon Mechanical Turk using our inter-
face (2). These small number of labeled images are utilized to train a binary classifier with deep
learning feature (3). Then, we run the binary classifier on the whole unlabeled images. The images
with high or low scores are labeled as positive or negative automatically, while the images ambigu-
ous to the classifier are fed into the next iteration as the unlabeled images (4). The pipeline runs
iteratively until the number of images in unknown set is affordable for exhaustive labeling.

Since the SUN database has a rich scene taxonomy, LSUN database has inherited the same list
of scene categories. To generate the query of image URL, 696 common adjectives (messy, spare,
sunny, desolate, etc.), manually selected from a list of popular adjectives in English (obtained by
[19]), are combined with each scene category name and are sent to Google. Adding adjectives to the
queries allows us to download a larger number of images than what is available in ImageNet and to
increase the diversity of visual appearances. We also set the time span for each query three days and
query all the three-day time spans since 2009. We find that a shorter time span returns noisier query
results. We then remove duplicated URLs and download the raw images. For a common category
such as bedroom, kitchen, bathroom, etc., we are able to obtain 50 to 80 million unique URLs. We
are expanding this efforts. For each scene category, we also query relevant synonyms. For example,
for the category “bathroom”, we also query “washroom”, “lavatory” and “restroom”, which get us
about 80 million unique URLs in total. In addition to scene categories, we also use the same method
to collect image URLs for object categories. The difference is that we use a different set of adjectives
that are more suitable to describe objects. For instance, we have obtained 80 million unique URLs
for images relevant to “person”.

To date, about 600 million images have been downloaded. A initial quality check is carried out
before labeling those image. Only color images of 256×256 pixels or larger are kept. Unlike
previous system [18, 19], we don’t remove replicates in the initial pool of images, because it is
very expensive to remove duplicates while avoiding overkill such tens of millions of images. In
addition, we don’t label many image, the duplicates in the original image dataset doesn’t increase
our labeling cost. The duplicate images usually have different compression quality, different sizes
and even cropping. They augment our dataset naturally and it will be the decision of the algorithm
designers how to utilize the duplication.

In the following two sections, we will first explain our labeling procedure using deep learning with
humans in the loop, and then we will go into further details about how to massively crowd-source
human labels from AMT.

3 Deep Learning with Humans in the Loop

Although we can collect tens of millions of relevant images for each category, the amount of human
effort to label these images are prohibiting and cannot be scaled up. We propose to use a deep
learning model with humans in the loop to amplify the human efforts to produce high quality labels
semi-automatically. As shown in Figure 1, we continuously train new models based on the labels
in the set of images we want to separate. We then use statistical tests to take out of the images that
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the models are sure about for certain quality goal. Then new images are labeled from the remaining
image set to train better models for it, and the iterations continue. The quality we seek for each split
is to keep the ratio of positive images higher than 95% and to lose less than 1% recall among the
negative images.

To make best use of the existing models and data, there are three stages in our pipeline depending
how hard to separate the unknown set of images. Before we start, we extract features for each
image from the model pre-trained on PLACES. First, the images are grouped based on similarity
suggested by the pre-trained features. We use k-means clustering to group the similar images and
the clusters with only positive or negative images can be taken out directly by ranking clusters and
sampling images in the top clusters. Second, we learn multiple boundaries to separate the images
in the feature space locally in each cluster and globally for all the images. We use various SVM
models to learn the boundaries. Last, we learn the new features with deep learning models to adapt
to the image sets that are hard to separate. The model is pre-trained on PLACES dataset and then the
model is fine-tuned by the labeled images in the target set. The clustering is only done once, but two
or three iterations are carried out in the second stage depending on whether we can make progress
by cutting the existing feature space. After the several iterations of the last stage, there are usually
hundreds of thousands of images left, that are hard to separate by the existing models, and we will
label them all by humans. In the following sections, each step is elaborated.

3.1 Labeling Testing Set

To monitor the general labeling progress and prepare the testing set for data release, we collect a
small testing set only based on manual label. This testing set is supposed to evaluate future scene
classification algorithm without bias. Therefore, we first randomly sample from all the images in a
category and label all of them on AMT twice. This stops when more than 1300 images are labeled
as positive by two turkers. We then manually go through the images that are labeled as positives
by at least one turker to make sure the labels for the testing set are correct. The labels obtained in
testing set have very high quality.

A challenge to our pipeline is to make sure the labels we collect semi-automatically also have good
quality. We exploit this testing set to help improve label quality. When we prepare for labeling
interface, we can find out the common mistakes in the labels and use them as instruction examples
and ground truth. Also, in Section 3.3, we use this set to figure out how many clusters we need to
keep.

3.2 Bootstrapping with Deep Features

A good feature representation is essential to start our labeling pipeline. We use the deep learning
feature from AlexNet [8] trained on PLACES [19]. In practice, we find the concatenation of fc7 and
fc8 layers performs the best in most of the tasks. And also, since the purpose is to extract image
information rather than classification, the feature extracted from the whole image is slightly better
than the one from a random crop.

3.3 Quick Labeling by Clustering

Because we download tens of millions of relevant images for each category, there are a lot of similar
positive and negative images in the initial set. Therefore, image similarity is an important cue to
quickly find positive images and remove negative images. To make use of the similarity information,
we first cluster images into different groups. We find that a lot of clusters contains high percentage
of positive or negative images. To be specific, we do k-means clustering on 200,000 sampled images
with correlation metric on the fc7 layer features of AlexNet. 2,000 cluster centers are obtained and
then all the images are assigned to the nearest cluster centers. Each image is scored by the initial
model and each cluster is assigned the median score of the images in it. All the clusters are ranked
by their scores and top clusters are kept for human to label. Given the testing set, we can evaluate
the recall of the positive images in the selected clusters. In practice, we seek a 95% recall, which
requires no more than 700 clusters for all the categories. We keep at least 600 clusters and normally
they can cover about 97% images.
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To figure out which cluster to really keep, 100 images are sampled from each cluster and labeled by
human. It means we can get about 60,000 labels for our data at this stage. We can then train a better
SVM model than the initial one that may bias to PLACES statistics. Given all these labels and the
new model, we do two things sequentially to split the whole set into three parts.

First, we use the label as validation set to find the SVM score thresholds for 95% precision and 99%
recall. The images with score higher than the first threshold is treated as positive and the images
scored lower than the second threshold is treated as negative. The remaining images are kept.

Second, for the remaining images in each cluster, if the rest of the cluster has more than 95% positive
labeled images, the remaining images are treated as positive. To decide which clusters to discard,
we have to put them all together to decide the proper threshold for positive image ratio. So we rank
all the remaining clusters by the ratio of positive images. By the number of total images in each
cluster, we can estimate the number of positive images in it. Then we find the cluster such that the
positive images in the clusters after it only account to 1% of total positive images in consideration
and discard those clusters. Normally, the threshold is around 5%.

After these two steps, we keep the remaining images and split them with the methods in the next
two subsections.

3.4 Splitting the Difficult Set

For the remaining images in the remaining clusters, we have two observations: 1) The whole set of
images is diverse. 2) Images in each cluster are quite similar. Therefore, we combine a global model
to capture the general appearance of the category and a local model to classify the positive image in
a fine-grained fashion.

Labels. Given the remaining clusters, we sample 400 images from each cluster (600 images if the
clusters are picked by the initial clustering stage). Those images also represent a roughly uniform
samples from all the images. They are used to train global and local models discussed below.

Global Model. We split all the labels into two sets: training and testing. 40% of new labels are put
in the testing set. The training set is used to train a linear SVM. Then we figure out what are the
score threshold for the positive and negative set.

Local Model. We also train a classification model for each cluster to adopt to the local appearance
of each cluster. Because there are much fewer labeled images in each cluster compared to the whole
set, we can afford to use more expensive models. To be specific, our model candidates are RBF
kernel SVM and exemplar SVM. When the percentage of positive labels or negative labels are low,
we use exemplar SVM. In the other cases, we use kernel SVM. We split the labels in each set into
three parts: training, validation and testing. Training set is used to train the models. Validation set is
used to determine the thresholds for splitting the cluster. In kernel SVM, we also use cross-validation
to determine proper parameters. Testing set is used to determine the percentage of positive images
in each split.

After training these models, we split the clusters for at most 5 parts. The positive parts and negative
parts determined by the global models are treated as positive and negative images. For the parts
split by the local models, we use the testing set to determine the positive ratio in each clusters and
as in the clustering stage, we take the images in clusters with more than 95% positive images into
positive set. A positive ratio threshold is determined based on 99% recall and cluster with lower
positive ratio are taken into the negative set. The remaining unknown set is kept and go through this
stage again until this method doesn’t generate significant positive and negative images. We usually
run 2 to 3 iterations at this stage before we move to the next stage, when the existing deep learning
features and SVM model can no longer separate the data effectively.

3.5 Fine Tuning for Adaptation

After one to two iterations of splitting based on pertrained deep learning features and SVM models,
the difficulty of further splitting the remaining unknown image set increases. Given a unknown set
that is hard to separate with the pretrained features on PLACES, we fine tune the deep learning
model trained by PLACES to do binary classification using the labels in the unknown set. Before
each iteration of fine tuning, we sample 100,000 images and get the labels. However, we don’t
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Figure 2: Our AMT Labeling Interface.
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Figure 3: Life time of a HIT on AMT.

label new images at the first fine tuning, because the existing labels can train a better features than
the those pretrained. We use 20,000 of the labels as testing set to determine the threshold for 95%
precision and 99% recall. We repeat the same process for a few more iterations, until the number
of images in the unknown set is less than 300,000. However, if the fine tuning can still separate
the unknown set efficiently, we will keep splitting. In the end, we will just manually label all the
unknown images.

4 High Quality Crowd-sourcing

A critical part of our deep learning with humans in the loop annotation pipeline is to harvest high
quality annotation from human annotators. We desire to use Amazon Mechanical Turk (AMT),
because it is the largest crowd sourcing platform available so that we can collect image labels very
fast at a very low cost. However, the labels obtained from AMT are usually quite noisy. Here we
present a series of mechanisms and measures we design to ensure the data quality.

4.1 Interface Design

Built on top of the labeling interface from [19], our labeling interface is to let the human annotators
to go through the images one by one. As shown in Figure 2, on the top of a screen, with a question
like “Is this a kitchen?”, a single image at a time is shown at the center, with small thumbnails for
previous three images on the left and upcoming three images on the right. The worker can press the
left arrow key on their keyboard to go through the images, with default answer of each image set to
“No” when the image is viewed. The worker is require to press the space key on the keyboard to
toggle the answer if the current answer is wrong, encoded by the color of the boundary box.
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(a) Comparison of image number for each category. The higher the better.

bedroom kitchen living room dining room bridge tower restaurant conference room classroom church outdoor
0%

10%

20%

30%

40%

E
rr

o
r 

P
e
rc

e
n
ta

g
e PLACES+LSUN

PLACES

(b) Comparison of classification error by training AlexNet. The lower the better.

Figure 4: Comparison of LSUN and PLACES. (a) For most of the categories, we are more than 10
times bigger than PLACES. Please note that the scale of y axis is log. (b) We train AlexNet with
PLACES and putting PLACES and LSUN together. With addition of LSUN data, the trained model
has better performance evaluated by PLACES test set.

We also observe that the scene image is normally very complicated and a bigger view of the image
is very helpful for human to understand the image. So we show one image at a time and zoom the
image to fill the whole window. To make sure the window can fully utilize the turker’s screen, we
provide a simple button and force them to open the labeling window in fullscreen mode.

4.2 Quality Control

It is a well known problem that the work quality of AMT varies a lot, and people have been proposed
various ways to overcome it. We take the approach of redundant labeling and enforced instruction.
For each image, we ask two people to label it and only use the doubly confirmed labels.

Given a set of images that need to be labeled, we divide them into groups of 150 images. In each
AMT HIT, a human annotator is required to label a series of 205 images for $0.1. 150 of them are
the actually labels we are interested in and the other 55 are for quality control purpose. The turkers
normally finish the hits within 5 minutes. We have tried more images in a HIT, but this length is the
best trade-off between the length and the overhead of quality control.

Figure 3 shows the steps for the life time of a HIT. First, we show an instruction page to explain
the task and questions with positive and negative examples. Although it is useful and necessary, we
find that some turkers may not actually read through the instruction very carefully, especially the
detailed definition and the positive and negative examples. They may also forget about the subtlty
for some categories. Therefore, we set the first 15 images in each HIT to test whether the turkers
understand the instruction. The images are from a set of examples representing typical scene images
and common mistakes. If a turker gives a wrong label to one of the example image, a pop window
will show up and block the labeling interface until the turker fixes the label to that image. After the
15 images for teaching purpose, they will go on to label without immediate feedback per image.

We embeded 40 image with known ground truth in each HIT to measure the labeling quality. 20
of them are online, meaning that their quality is checked before the HIT result is submitted to the
server. If the turker can’t pass the online check, they are not allowed to submit the labeling results
and advised to revise their labeling results until they can pass the online check. The other 20 of those
images are checked after the HIT is submitted. They are used to check whether the turker hack our
Javascript code to past the online check to make sure they exhaustively look for online ground truth
to pass the submission test. The labels of these images are not sent to the turker’s browser, so they
can’t hack our interface to submit bad results. The labeling accuracy threshold for ground truth is
90% for the online and 85% for the hidden.

Together with the examples, the ground truth check is to make sure the turkers submit high quality
labels. We also use them to prevent the common mistakes. We try to understand the kinds of
common mistakes from the wrong labels in the testing set. When we label the images in the training
set, we continue adding more images to examples and ground truth when necessary. We maintain
hundreds of ground truth images and for each assignment on AMT, we dynamically sample a subset
of images.
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Iteration Method Positive images Precision Positive labels Label Ratio
0 Clustering 941,981 96.9% 9,515 1%
1 ConvNet Feature + SVM 1,918,913 96.4% 41,785 2.1%
2 ConvNet Feature + SVM 2,011,332 96.2% 88,259 4.4%
3 ConvNet Fine Tuning 2,140,763 96.1% 88,259 4.1%
4 ConvNet Fine Tuning 2,215,244 95.9% 147,453 6.6%

Table 1: Algorithm statistics of kitchen. The third column shows the cumulative number of positive
images in each iteration. The fifth column shows the cumulative number of positive labels provided
by human. The last column shows the ratio of human labeled images compared to all the positive
images we obtained. See the main text for more details.

5 Does Bigger Data Really Help?
To test our labeling pipeline and justify the need of bigger dataset for training, we have constructed
an initial version of LSUN with millions of labeled images in each scene category. We experiment
with popular deep nets using our dataset, and obtain a significant performance gain with the same
model but trained using our bigger training set.

5.1 Evaluation and Statistics

We have released 10 categories and some categories has millions of images. Figure 4 shows the
dataset statistics compared with PLACES. For most of the categories, our dataset is more than 10
times bigger. In the case of bedroom, ours is 43 times bigger.

We also investigate how well our semi-automatic pipeline can do. We want to know the dataset
quality and how much human efforts we can save. The statistics of kitchen is shown in Table 1 as an
example. The third column shows the cumulative number of positive images in each iteration. The
fifth column shows the cumulative number of positive labels provided by human. The last column
shows the ratio of human labeled images compared to all the positive images we obtained. We use
the testing set to calculate the sampled positive image ratio, which is shown in the fourth column. We
can see that the initial stages can give us the most images with small set of labels, while it becomes
harder to get positive images in the later stage. It is because the images in the unknown set become
harder to split. It is interesting to see that given the same set of labels, fine tuning can discover more
positive images than SVM models. For these 10 categories, we spent around $8,000 on human labor
to collect 10 million images in total. Overall, we achieve our targeting dataset quality with small
portion of labels.

5.2 Training ConvNet with More Data

Given the data we have obtained, we want to know whether more data can help the current models
to achieve better performance. Therefore, we use the standard AlexNet [8] and compare the model
trained by PLACES [19] data with the same model trained by both PLACES and LSUN. As a simple
measure to balance the dataset, we only take at most 200 thousand images from each LSUN category.
Then we test the classification results on PLACES testing set. The error percentage comparison is
shown in Figure 4b. The overall detection error percentage is 28.6% with only PLACES and 22.2%
with both PLACES and LSUN, which yields a 22.37% improvement on testing error. Although
the testing is unfavorable to LSUN due to potential dataset bias issues [16], we can see that the
additional of more data can improve the detection accuracy on PLACES testing set.

6 Conclusion
We identify the lack of progress in dataset construction as a major gap in further advancing visual
recognition. We propose a working pipeline to amplify the human efforts to enable them to label
million-scale image collections, using deep learning with humans in the loop. We have constructed
an initial version of “LSUN” database, a scene-centric database with millions of labeled images
in each scene category. Simple experiments on this dataset have already demonstrated the great
potential of bigger data for visual recognition. We will continue to contruct this large-scale database
and hopefully it will be able to serve the community to continue making amazing progress.

Acknowledgment. This work is partially funded by Intel, Google, MERL, Princeton Project X, and
a hardware donation from NVIDIA.
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