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Figure 1. A robot that can recognize all the objects. We propose an extremely robust mechanism to reconstruct a 3D map and use crowd
sourcing to collectively annotate all objects. During testing, the robot localizes its pose, recognizes all seen objects (four images on the
right from four RGB-D sensors mounted on the robot), and identifies new ones (e.g. the backpack and the box). In most cases, the robot
can recognize autonomously. It can indicate reliably when it fails, and utilize crowd sourcing to fix the problem or to annotate new objects.

Abstract

While general object recognition is still far from being
solved, this paper proposes a way for a robot to recog-
nize every object at an almost human-level accuracy. Our
key observation is that many robots will stay in a relatively
closed environment (e.g. a house or an office). By con-
straining a robot to stay in a limited territory, we can ensure
that the robot has seen most objects before and the speed of
introducing a new object is slow. Furthermore, we can build
a 3D map of the environment to reliably subtract the back-
ground to make recognition easier. We propose extremely
robust algorithms to obtain a 3D map and enable humans to
collectively annotate objects. During testing time, our algo-
rithm can recognize all objects very reliably, and query hu-
mans from crowd sourcing platform if confidence is low or
new objects are identified. This paper explains design deci-
sions in building such a system, and constructs a benchmark
for extensive evaluation. Experiments suggest that mak-
ing robot vision appear to be working from an end user’s
perspective is a reachable goal today, as long as the robot
stays in a closed environment. By formulating this task, we
hope to lay the foundation of a new direction in vision for
robotics. Code and data will be available upon acceptance.

1. Introduction

Consider the following grand challenge of computer vi-
sion for robotics: prepare a living room for a 10-person

party. To enable this task, we need a robot to be able to
do planning, grasping, manipulation and reasoning. But be-
fore all that, at least the robot needs to recognize the objects,
such chairs, sofas, coffee tables, dishes, sodas, etc.

While we have witnessed a dramatically improvement
of object recognition in the past few years (e.g. [8, 21, 12]),
we are still far from having a vision system for robots to
recognize objects reliably in real-world environments. The
success of Internet single-image classification and detection
cannot live up to its promise to visual perception in robotics.
Therefore, most robot visual perception systems today only
focus on recognizing a dozen of carefully pre-scanned ob-
ject instances with clean background (Figure 3).

We aim to bridge the gap to enable robots to recognize
realistic objects very reliably in their natural settings. Our
key observation is that many (service) robots will stay in
a relatively closed environment, and this greatly constrains
the possible objects that it can encounter. For example, a
household service robot will stay in a house and never go
outside the house [11]. The set of possible objects that the
robot can encountered is finite, and the speed of introduc-
ing a new object into a typical house is also limited. A robot
doesn’t have to recognize all the objects in the world to be
fully capable in such a closed environment. This paper pro-
poses to exploit this critical constraint to build a robot vi-
sion system that can reliably recognize objects in a realistic
environment at an almost human-level accuracy.

Although this paper focuses on robot vision, the same
idea also applies to many other movable devices that are
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Figure 2. User scenario. A robot pre-scanned a house. All data is
uploaded to the cloud to be annotated by human workers on crowd
sourcing platform, to obtain a object library and a 3D map. After
that, the robot can recognize all the objects and provide service.

Robot in Service

only used in closed environments, such as head-mounted
displays (e.g. Oculus Rift or Microsoft HoloLens) that peo-
ple typically only use in their own living rooms.

1.1. User scenario

A user buys a robot, brings it home and turns it on. And
the journey of its life begins, as illustrated in Figure 2. In the
first few hours, the robot does nothing but wanders around
the house, scanning the environment by taking videos to
reconstruct a 3D map of the place. The robot picks some
frames from the video to cover the space, and asks human
workers in the cloud to label all the objects in these frames,
using online crowd-sourcing platforms (e.g. Amazon Me-
chanical Turk). For a typically apartment, this costs about
$100 and takes about an hour. The robot uses the annotation
to build a 3D object library and it is ready for service.

Now the robot can navigate within the apartment and lo-
cate itself, relying on the main structure of the rooms that
are not movable (e.g. no home remodeling). Given the lo-
cation, the limit set of possible objects, and the knowledge
of their appearance specific to this apartment, the robot can
recognize the objects almost perfectly. Of course, the robot
will break miserably if it leaves the specific apartment, but
it can avoid going outside the known territory. If there is
unrecognizable change (e.g. new object), it will reconnect
to crowd-sourcing platform again and ask humans to anno-
tate the frame (e.g. with a monthly subscription fee of $10).
In such a way, a robot can recognize all the objects in the
house perfectly to support its missions.

1.2. Challenges and our solutions

To build such a system, there are several technical chal-
lenges that we have to overcome (Figure 1). First, we need
an extremely robust way to reconstruct a 3D map for any
given environment. In this paper, we propose two cou-
pled mechanisms to make this happen: a panoramic RGB-D
camera array and a special robot path to ensure significant
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on recognizing objects that are completely inside the field of view
(FOV) on a clean background. The objects are from a very limited
set with similar sizes suitable for those algorithms. No new objects
are allowed, and all objects are completely scanned using a careful
setup. We advocate to recognize objects in their natural scenes
without change to the environments. (image source: [13, 34])

view redundancy for loop closing. Second, we need a way
to enable multiple humans to collectively and efficiently la-
bel all objects in a place at the instance level. We propose
an algorithm to select frames to maximize coverage, and a
robust way to associate instances in 3D. Third, we need a re-
liable way to recognize objects during testing time. We pro-
pose to use the 3D pose of the robot to retrieve the unmov-
able background structure of the environment (e.g. floor,
walls, and ceiling) in order to reliably subtract the back-
ground, which significantly reduces the difficulty of recog-
nizing foreground objects. For each of the foreground mov-
able objects, we build a mixture of 3D models merging from
multiple views to increase view invariance. Finally, we need
a reliable way to fill in holes of old objects when the oc-
clusion situation changes to avoid requesting human anno-
tation too frequently, but at the same time to avoid overly
propagate to uncertain areas or new objects. To this end,
we propose to integrate object color, normal distribution,
shape bounding box, spatial continuity, to eliminate impos-
sible object labels for reliable propagation.

Besides these technical contributions, there are several
new concepts as well. First, this project provides a way to
bring the success of robotic object recognition from table-
tops to real-world scenes. Instead of constraining the back-
ground to be very artificial, we recognize objects in real-
istic environments but we are still able to use background
subtraction to ease recognition. Second, unlike Internet im-
ages, there is ample domain knowledge we can use to re-
duce the difficulty of perception in robotics applications.
This task puts computer vision algorithms to a real test.
By integrating all useful cues, it is a great exercise to let
us clearly know how far we are from making robot vision
work. Third, our user scenario may potentially incubate a
new business model for robot perception, by leveraging au-
tomatic recognition and online crowd sourcing. Fourth, our
formulation of the user scenario opens up a new research
direction in vision for robotics. By constructing a realistic
offline benchmark directly related to the goal, we can test
algorithms without a robot but reliably reflexing the true
performance in real world. Last, we have built a working
system with all the components. Experiments shows that



we can already make object recognition working most of
time without any human involvement to enable autonomous
operation.

1.3. Related works

There is a vast literature on object recognition from 2D,
3D, RGB-D, video in computer vision and robotics. For
category-level recognition, the state-of-the-art object de-
tectors are [12, 8, 24], and [36, 17] for RGB-D images.
[29, 25, 16, 4, 23] are popular semantic segmentation sys-
tems. However, category-level recognition is still far from
human performance. For instance-level recognition, well-
known approaches include [30, 28]. For RGB-D images,
the state-of-the-arts [37, 13] focus on recognizing table-top
objects on a clean artificial background, with object models
carefully pre-scanned from all view angles [22, 34] (Figure
3). Our approach is built on top of these success, extending
them to realistic scenes.

Our 3D mapping is related to RGB-D reconstruction
[26, 19, 39, 27, 5, 41] and localization [33, 18]. Our algo-
rithm is closest to the RGB-D Structure from Motion (SfM)
from [41]. We extend their algorithm to utilize four RGB-D
sensors and encode the camera height as a hard constraint.
We design a special trajectory to control the robot to move
in a way with significant redundancy to favor loop clos-
ing to ensure good 3D reconstructions. Toward semantics,
there are several seminal works on combining 3D mapping
and object recognition on RGB-D scans [9, 32, 10, 40, 20].
There are also several seminal works in image domain as
well [3, 2, 6, 15].

Our object annotation is built on the success of many pre-
decessors [31, 38, 14]. The most related one is the SUN3D
annotator for RGB-D videos [41], which uses object anno-
tation to correct reconstruction errors by object-based loop
closing. Because our 3D reconstruction is much better, we
label individual frames to reduce the labeling difficulty. We
also propose a novel 3D instance association algorithm to
link object instances in 3D automatically so that multiple
humans can collectively label the same sequence.

Overall, perhaps the most relevant work is Google’s self-
driving car [7]. The great success of the car relies on the
pre-annotated maps that contains 3D scan of all the streets
that the car can drive to. The maps are precisely annotated
by humans for all stationary objects, such as the location
of all traffic signs and lights. During driving, based on the
car’s current location, the data is looked up to serve as vir-
tual infrastructures, and it already gets to know a great deal
about the environment. For example, without even looking,
the car already knows where a traffic light is, and just needs
to classify the color of the light. In such a way, the very
difficult street scene understanding task is transformed into
a much easier instance-level task, and human-level recog-
nition accuracy is achieved. This paper proposes to build
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Figure 4. Robot and path. On the left we show our robot pro-
totype equipped with four RGB-D sensors at the top close to a
typical human height. On the right we illustrate the robot path
during training phase, where it rotates two circles at each location
and moves 0.3 meter to the next location.

an indoor version of Google’s car by utilizing the power of
pre-annotated data. We show that it is a reachable goal to-
day for a general-purpose robot vision system to recognize
every object in a closed environment.

2. Formulation

To make it concrete, we formulate the goal as the fol-
lowing task. There are two phases: training and testing.
During training phase, RGB-D videos are captured when
the robot moves around in the environment that it is sup-
posed to spend its life in. None of the objects is allowed to
move during this phase. The 3D map of the environment
is reconstructed, and a small number of frames are picked
to be labelled by human workers on Amazon Mechanical
Turk. During testing phase, for each of the RGB-D frames
captured by the robot, the task is to estimate the 6D camera
pose for the frame, and recognize the object categories and
6D object poses for all the objects presented in the images.
Objects may be at different locations between training and
testing, and among different testing images. Some objects
may disappear and some new objects may appear. The goal
is to produce a very high quality recognition result with a
reliable confidence indicator, to enable autonomous opera-
tion in most cases. The algorithm should also be able to tell
whether it is necessary to bother human annotators, if the
recognition lacks confidence or when some new object is
identified. Note that our focus is on the vision component,
and other components of the robot decide its trajectory dur-
ing testing phase, depend on its missions.

3. Training phase

During training, we desire a robust way to reconstruct
the 3D map that the robot will spend its life in. The success
of whole system depends on the 3D map, and it is crucial
to be able to have a very robust algorithm for any environ-
ment. To this end, we propose two major mechanisms to
make reconstruction become much easier. First, we mount
four RGB-D sensors on top of the robot to have a panoramic
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Figure 5. 3D reconstruction from diffferent sensors. Sensor 1
sees the ceiling, while sensor 4 sees the floor.

RGB-D input. For example, if the robot can measure the
distance to the four walls of a typical rectangular room, it is
much easier to localize the robot to obtain a good 3D cam-
era pose. Because the robot has a fixed height, we can also
enforce the camera height as a hard constraint. Second, we
let the robot to move in a way that it sees a lot of duplicate
views to enable loop closing. When bundle adjustment is
overly constrained with many correspondences, 3D recon-
struction will have no choice but to converge to the right
solution.

3.1. RGB-D camera array

We use an off-the-shelf TurtleBot 2 (Figure 4) and a
Macbook Pro. The laptop controls the robot wheels and
collects data from four ASUS Xtion Live Pro sensors. We
use four sensors to stream four RGB-D videos at 640 x 480
30fps, reaching the maximal USB bandwidth of the laptop.
We mount them on a shelf that is 1.4 meter tall, because
most indoor spaces are designed for human heights. All
the components of our robot can be purchased off-the-shelf
from the Internet, and cost about $2000 (excl. laptop).

We configure the four cameras to have a panoramic field
of view. They are arranged at 0°, 90°, 180° and 270° hor-
izontally, and 5° up, 10° down, 25° down and 40° down
vertically, covering 90° vertical field of views. Figure 5
contains point clouds reconstructed from the cameras with
different tilt angles. We didn’t use a checkerboard to cal-
ibrate of the transformation between cameras, because our
cameras have no view overlapping at all. Instead, we use
the hardware setting to initialize the calibration and adjust
it during reconstruction.

3.2. Scanning path

To make object recognition more robust, we desire to
densely capture objects from as many different views as the
robot can possibly navigate to. Also, to produce a good re-
construction, we control the robot to move in a way that
enforces significant view overlapping to ensure ample loop-
closing correspondences. As shown in Figure 4, we let the
robot move 0.3 meter, stop to rotate two circles, and then
move to the next location. Rotating two circles lets every
camera see exactly the same view twice. In this way, ev-

with fixed camera height
Figure 6. Camera height as hard constraints in bundle adjust-
ment. We can see that by constraining the camera height, the floor
gets flat and the reconstruction gets better.

ery frame of the RGB-D videos will have many keypoint
correspondences with other frames.

3.3. Panoramic SfM

Similar with the state-of-the-art RGB-D SfM [41], we
use a frame-based approach with 3D keypoint-based bundle
adjustment. For each RGB-D frame, we detect SIFT key-
points on the color images, and use depth map to obtain the
3D coordinates for the keypoints. For a pair of RGB-D im-
ages, we use RANSAC with 3 points to estimate the 6D ro-
tation and translation between the two images and obtain the
inlier correspondences. We use this pairwise alignment rou-
tine to align every two consecutive frames from the video
captured by the same camera to obtain initial camera poses.
We use the initial calibration among the cameras to align the
3D reconstructed from the four cameras as the initial poses
for bundle adjustment. To obtain more correspondences, we
compute bag-of-word for each image, and choose pairs of
frames from any camera with high dot product values. For
each pair, we use the pairwise alignment routine to obtain
inlier correspondences to add into the bundle adjustment.

For the n-th frame, we model the robot base by its
(Zn, zn) location and rotation angle 6,,, with y,, = 0 be-
cause the robot has a fix height (i is the gravity direction).
‘We model the extrinsics of each camera as a 6D rotation R..
and translation t. w.r.t. the robot base. For a 3D point X
from the c-th camera of n-th frame, its world coordinate is
Rj(0:) (R X+te)+[xn, 0, 2,]7, where Ry(-) is a 3x 3 ro-
tation matrix for rotating around % axis. For bundle adjust-
ment [ 1], we model these extrinsic parameters {2, 2, 0 }
and the camera calibration {R., t.} as variables, with the
default intrinsic parameters from OpenNI as constants. We
did try to keep the camera calibration {R., t.} as constants
during bundle adjustment. But the reconstruction results are
always better when we model them as variables.

To speed up reconstruction of long sequences, we break
down a sequence into segments of 1,000 frames. We recon-
struct each segment independently. Then, we link these seg-
ments together by aligning the consecutive frames among
them. For each frame in a segment, we look for a frame



Figure 7. Reconstruction & annotatlon The kitchen in on the
left, and the tea area is on the right. Semantics is encoded as colors.

Figure 8 Annotation. Left shows the selected images for annota-
tion from the top view. The polyline shows the camera trajectory,
and the colored sticks are the camera direction of selected views.
The 3D points are the voxel centers colored based by their mem-
bership to selected views. Right is the annotated 3D point could,
color coded by object instances after automatic association.

with significant view overlapping from another segment,
and use the pairwise alignment routine to add more cor-
respondences. Finally, we bundle adjust the whole recon-
struction again. Figure 6 compares the reconstruction with-
out and with camera height as a hard constraint. It takes
about 2 hours to reconstruct this sequence using 10 CPU
cores. We tried various environment and found that our sys-
tem is extremely robust. Figure 7 shows more results.

3.4. Collectively annotation

It is critical to annotate all the objects in the space at a
high quality for reliable recognition. SUN3D [41] provides
a way to label RGB-D videos. But because their reconstruc-
tion from hand-held captured videos has significant drifting,
they can only rely on local stitching. In our case, given the
high quality reconstruction, our goal is to minimize human
efforts by embracing 3D information as much as possible.

Our algorithm first picks a small number of frames to
cover the whole space. Then, we use Amazon Mechanical
Turk to annotate all the objects in each frame by polygons
and object categories. Finally, our algorithm figures out the
association of polygons to the same instance of objects.

View selection. To minimize the human effort, we de-
sign an algorithm to choose a minimal number of views to
achieve 100% coverage. First, we represent the 3D space
by voxel grids of 0.01% meter® and obtain a list of surface
voxels that contains more than five 3D points. We maintain
a counter on each voxel to count how many times this voxel
has been seen so far. In each iteration of the algorithm, we
pick one frame from the remaining ones that maximizes the
number of voxels with count transition from 0 —1. When
a frame is picked, we increase the count for each voxel on
the depth map of the picked frame. This greedy selection
ends when no new frame can be picked to further increase
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Figure 9. Instance association. Each row shows seven views of
the same object automatically associated by our algorithm. The
focus objects are highlighted in red.
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Figure 10. Label propagation to other view.
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the coverage. Figure 8 shows an example of view selection.

Instance association. For the each selected view, we ask
human workers on AMT to label all the objects in this
frame, using a LabelMe-style interface [31]. We require a
instance level segmentation for each frame. But associating
instances across many different images is a very challeng-
ing and time consuming task, especially when annotators
work collectively. Therefore, we propose an automatic al-
gorithm to associate the polygons to objects instances, uti-
lizing our good 3D reconstruction. For each pair of images
with overlapping views, we try to establish association be-
tween the two sets of polygons. Using their relative pose
and depth maps, we warp the label from one image to an-
other, to obtain the ID mapping pair between the two label
masks at each pixel in the common overlapping area. We
count the frequencies for each matched label pairs if their
object names are the same. We use a greedy algorithm to go
through all pairs one by one in the descending order of their
frequencies, until it cannot find more pairs. For each pair,
we accept it only if its frequency is more than 50 pixels, and
none of the two polygons has been paired to others so far.
In this way, from each of two images, we can get a partial
association list. We merge all the lists into one, and use con-
nected component to obtain the final object association for
the whole sequence. We evaluate the instance association
by the “office” sequence. Figure 9 shows some associated
polygons across images. It makes no mistake of merging
two objects, but it is slightly over-fragment and cannot as-
sociate 10 polygons that it should be able to. Figure 7 and 8
show some point clouds colored with instance association.

Label propagation. Because only a very small portion of
frames are labeled by humans, and we will have more in-
variance if more views of an object are seen, we propagate
the label to other frames, making use of our 3D reconstruc-
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tion. For an unlabeled image, we warp' the depth, color,
and label maps of the annotated images to the target image.
For each pixel, if the depth and color are consistent, we cast
a vote to the label. We accumulate votes from all annotated
images and take the majority to obtain a label (Figure 10).

4. Testing phase

During testing, given a frame with four RGB-D images
from the sensors, the task is to estimate the pose of the
robot, recognize all the previously seen objects, and identify
any unseen new objects in these images. Assuming spatial
continuity, we also take the robot pose from the previous
frame as an input. We classify objects as movable or non-
movable’, by the annotation of object category.

4.1. Localization and background subtraction

As shown in Figure 11, given the initial pose, we can
identify all training frames with view overlapping. For each
of these training images, we warp the unmovable areas to
the testing view using the initial camera pose. We check the
depth consistency (with 0.1 meter as the threshold) to iden-
tify the unmovable area in the testing frame. If the area is
bigger than 50 pixels, we run the SIFT keypoint detection
in these areas and use our pairwise alignment routine (Sec-
tion 3.3) to extract correspondences between the unmovable
areas of these two frames. We collect all correspondences
from all training frames, and use RANSAC to find a better
pose for the current testing frame.

Using this refined pose, to extract background, we re-
peat the same steps again to warp the unmovable areas of
the training frames to the testing frame. For each pixel in
this area with consistent depth and color, we accumulate a
vote and threshold the vote count to identify the unmovable
areas. In this way, we can recognize the unmovable objects
as background in the testing frame. The remaining unrec-
ognized areas are the foreground to be recognized next.

4.2. Object model and recognition

To recognize the foreground movable objects, for each
object, we build a 3D point cloud model with SIFT descrip-
tors, similar to the state-of-the-art RGB-D instance recog-
nition systems (e.g. [37]). For each object, we maintain

'We triangulate the mesh and render them in OpenGL.
2For simplicity, we assume there is no deformable objects (e.g. human).
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Figure 11. Recognition pipeline during testing. Details are explained in Section 4.1 and 4.2.
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a mixture of clusters, each of which is a 3D point cloud
merged from multiple RGB-D images, with a SIFT de-
scriptor attached to each 3D point extracted from the im-
age. We do not directly use camera pose from reconstruc-
tion to merge keypoints, because the reconstruction may not
be perfectly accurate locally, especially for small objects.
Starting from the SIFT keypoints of the object from each
frame, we agglomeratively merge two point clouds, if there
are enough SIFT inliers from RANSAC. The hierarchical
merging is done very conservatively, so that we can obtain
accurate 3D shapes with camera poses overfitted to each ob-
ject. Each object may be represented as a mixture of clus-
ters, instead of only one cluster. During testing time, for the
remaining foreground areas, we extract SIFT keypoints with
3D locations, and use RANSAC to match these 3D points
with SIFT descriptors in each cluster. If a good matching is
found, not only the category and instance label, but also the
6D object pose (Figure 11 right) are recognized.

Although movable objects may move, they may also stay
at the same location as it was during training. Therefore,
we reuse the same algorithm for background subtraction to
warp the movable objects using the refined pose, and check
consistency for both depth and color to confirm the guess.
We also accumulate a voting count to the object instance la-
bel. This step is run in parallel with the object model match-
ing, and the voting count is accumulated together. Finally,
we choose the label with maximal count for each pixel.

4.3. Conservative propagation & new object

As shown in Figure 12(b), there may be areas that
couldn’t be recognized or with wrong boundaries, due to
various small imperfection from human annotation or the
algorithm. More significantly, there may be holes in the
recognition result because there was another object occlud-
ing this object in the training set (the yellow circles in Fig-
ure 12(a)). Now that the occluder moves away, a new part
of the object appears, and we desire to the algorithm to be
able to propagate the label to these missing areas. However,
this propagation must be very conservative, because we do
not want the label to propagate to cover any new object (e.g.
the white box in Figure 12(f)). The correct label for new ob-
jects should be “no label”, so that the system can send it to
ask for annotation from crowd sourcing.



(a) Before propagation (b) Region need to fill
Figure 12. Conservative propagation. Yellow circles in (a) highlight the holes created by the removal of occluders after the training phase.

train | labeled | obj test | labeled | area (sq.ft.)
kitchen 432x4 33 29 | 339x4 18 110
office 637x4 58 | 40 | 415x4 24 180
tea area 21,407x4 | 182 [329|6,779x4| 40 1,870
meeting place | 24,059x4 | 136 | 82 [7,001x4| 40 1,530

Table 1. Benchmark statistics. Col 1: number of training frames.
Col 2: number of training frames being labeled. Col 3: number of
object instance labeled in the training set. Col 4: number of testing
frames. Col 5: number of labeled testing frames with ground truth
for evaluation. Col 6: the area of the space.

To handle wrong labels near the boundaries, we first
shrink the recognition mask by image erosion (with a 5-
pixel disk as kernel), and then propagate the labels to better
align with the image and depth boundary.” We treat the
shrunk labels as hard constraints during label propagation.

For the propagation, we first identify a list of possible
object instance labels for each unrecognized pixel (Figure
12(d)), by considering color, normal, and 3D bounding box
of an object. For each object, we can obtain their color and
surface normal distributions, and use these two distributions
to estimate the likelihood of each pixel belongs to this ob-
ject (Figure 12(c)).* We also obtain a 3D bounding box for
each object using the labeled 3D point cloud from the train-
ing set. In testing, we position the bounding box using the
estimated object pose, and check whether this pixel is out-
side the box and therefore should not belong to this object.

A good propagation should have a smooth transition of
color, normal and depth. And it should be able to stop if it
is a new object. We also desire to enforce the spatial conti-
nuity and want the propagation to be connected to the hard
constrained label mask. To this end, we maintain a max-
heap of all unlabeled pixels adjacent to the areas with labels.
In each iteration, we will choose one pixel from the heap
that has the most similar color, normal, and depth with one
of its neighboring labeled pixel to propagate the label from
this neighbor, without violating the label possibility con-
straints estimated above. When a pixel is chosen to prop-
agate the label, its unlabeled neighbors will be put into the
heap, or their key values will be updated (i.e. increase-key)
by the similarity score with this newly labeled pixel. The
iterations stop when the maximal similarity score is below

3During erosion, thin objects might completely disappear and not be
able to recover during propagation. So we use image opening to identify
these thin objects and only shrink the labels for the thick objects.

“4For a given pixel, we compute the likelihood by counting the number
of pixels within the object mask with similar color or normal directions.
The count is thresholded into binary decision to indicate whether this pixel
can be possibly labeled as the object.

(c) Normal and color likelihood (desk)

(f) Result

(d) Possibility map (e) Ordering map

a set threshold. Figure 12(e) shows the pixel ordering of the
propagation. In such a way, we make use of color, normal,
depth, size, continuity to propagate conservatively, and stop
when new object(s) are introduced (Figure 12(f)).

After propagation, if there are still a large unrecogniz-
able area, the image will be sent to crowd sourcing platform
to request for annotation. Otherwise, the recognition is con-
sidered successful autonomously. In both cases, the label
mask is integrated to the object model. The whole pipeline
for testing takes about 10 mins per frame for a typical scene.

5. Experiments

For this new task, we construct a benchmark to evaluate
the algorithm carefully. The benchmark also enables offline
comparison without a robot, and eases follow-up research.

5.1. Benchmark evaluation

We construct a benchmark of four places: an office, a
kitchen, a tea area, and a meeting place. Table 1 gives
some basic statistics. The kitchen is a single room in an
office building. The office is a professor’s office. The tea
area contains two connected rooms: a tea room for social
events with a small kitchen, and a lounge with sofas and a
coffee table. The meeting place contains three connected
rooms: a meeting room with a comfortable setting for dis-
cussion groups of 20-25 people, a large living room to pro-
vide a cozy space, and a kitchen. For the training phase, the
robot exhaustively scans the places using rotate-and-move
scheme. For the testing phase, we move some old objects
naturally and introduce some new objects. For labeling, we
experiment with AMTurk and we can obtain good results
with quality control mechanisms from [35]. But to con-
struct a high quality benchmark, we label all data in house.

We evaluate the recognition result by semantic segmen-
tation accuracy. We use recall to measure the ratio of pixels
with correct labels to the total number of pixels. We only
evaluate on the set of pixels Z with valid depth and annota-
tion. We use precision to measure the percentage of correct
pixels among all the predicted labels. In our case, we desire
an almost perfect precision with a high recall, so that robot
can avoid requesting humans to annotate too frequently.
When a new object appears, we desire the algorithm to pre-
dict “no label” at the region, and prediction of any label
will be considered as wrong. For the i-th pixel, let ¢; be its
ground truth label, and /; be the predicted label (I; = () when
it predicts no label). Let N denote the set of new objects.
Therefore, the correctness of a predicted label is §; = (¢; ¢
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Figure 13. Result comparison. Here we show the category-level semantic segmentation result. Red circles highlight the new objects.
[29] pre-train | [29] re-train | NN gist | NN pose | bg+fgwarp | bg+SIFT | SIFT | bg+fgwarp+SIFT | + propagate | +human | no new
instance rec.au - 84.45 62.12 63.95 70.15 60.72 | 67.48 74.01 86.58 91.01 86.59
precision - 84.45 66.67 68.56 97.61 97.97 |96.82 97.44 96.03 96.24 | 96.23
category rega%l 6.67 86.24 62.12 63.95 70.15 60.72 | 67.48 74.01 86.58 91.01 87.36
precision 6.67 86.24 67.96 69.85 98.45 |97.95 98.35 96.89 97.13 | 97.08

Table 2. Performance evaluation.
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5.2. Comparisons

To see the benefits from constraining a robot to stay in
a closed environment, in Table 2, we compare the perfor-
mances of an state-of-the-art algorithm [29] pre-trained on
SUN-RGBD [35] vs. re-trained on our training set. The
bad performance of the pre-trained model shows that gen-
eral object recognition is very difficult. And the huge per-
formance gap between them suggests that constraining in a
closed environment makes the problem much easier. Dif-
ferent from our method, this approach mostly relies on ap-
pearance, without any other cues such as object movability,
environment map and camera pose. Note that this approach
[29] has the same recall and precision, because it makes pre-
diction on every pixel regardless of its confidence, which is
undesirable in our scenario. We also design another set of
baselines using Nearest Neighbor (NN), based on appear-
ance or camera pose. For appearance-based NN, we extract
GIST features on RGB-D image [35] to find the NN. For
camera-pose-based NN, we use the initial pose to find the
training frame that has the largest overlapping view. In both
cases, we directly copy the NN’s label map as the result.
Table 2 and Figure 13 shows the comparison with our algo-
rithm. By using all domain cues, our algorithm significantly
outperforms all these baselines.

To evaluate the importance of each component in our al-
gorithm, we decompose our pipeline and evaluate them sep-
arately. “bg+fgwarp” assumes none of the objects moves
and it simply warps the label from training frames using re-
fined camera poses. “bg+SIFT” uses warping to explain the
non-movable objects and uses SIFT to match all the remain-
ing regions. “SIFT” assumes that all objects are movable
and directly matches them with object models using SIFT.
“bg+fgwarp+SIFT” combines all above the components. “+
propagate” is our full pipeline that also propagates the label
to increase prediction coverage. The results in Table 2 sug-
gest that every component in our pipeline is very reliable
with a very high precision. Our final result combines differ-
ent components to increase the coverage of the prediction,
in order to achieve a better recall. “+human” shows what
happens if the algorithm decides to ask a human annotator
to fix the result using crowdsourcing. We can see that hu-
man performance is not 100%, which is caused by the im-
perfection of annotation on boundaries. Last but not least,
“no new” shows the performance when there is no new ob-
ject (we exclude the new object area in evaluation). From
here, we can see that the automatic algorithm performs al-
most as good as humans. This suggests that when there is
no new object, the level of accuracy is high enough for fully
autonomous operation without any human involvement.



6. Conclusion

We observe that most robots will stay in a closed envi-
ronment (e.g. a house). Based on this, we propose a way to
enable a robot to recognize all objects at an almost perfect
accuracy, leveraging 3D maps and crowd sourcing. By for-
mulating and constructing a benchmark, we hope to lay the
foundation of a new direction in vision for robotics.
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