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Abstract

3D context has been shown to be extremely important
for scene understanding, yet very little research has been
done on integrating context information with deep neural
network architectures. This paper presents an approach to
embed 3D context into the topology of a neural network
trained to perform holistic scene understanding. Given a
depth image depicting a 3D scene, our network aligns the
observed scene with a predefined 3D scene template, and
then reasons about the existence and location of each object
within the scene template. In doing so, our model recog-
nizes multiple objects in a single forward pass of a 3D con-
volutional neural network, capturing both global scene and
local object information simultaneously. To create training
data for this 3D network, we generate partially synthetic
depth images which are rendered by replacing real objects
with a repository of CAD models of the same object cate-
gory1. Extensive experiments demonstrate the effectiveness
of our algorithm compared to the state of the art.

1. Introduction
Understanding indoor scene in 3D space is critically

useful in many applications, such as indoor robotics, aug-
mented reality. To support this task, the goal of this paper
is to recognize the category and the 3D location of furniture
from a single depth image.

Context has been successfully used to handle this chal-
lenging problem in many previous works. Particularly,
holistic scene context models, which integrate both the bot-
tom up local evidence and the top down scene context, have
achieved superior performance [6, 23, 24, 48, 49]. How-
ever, they suffer from a severe drawback that the bottom up
and top down stages are run separately. The bottom up stage
using only the local evidence needs to generate a large quan-
tity of noisy hypotheses to ensure a high recall, and the top
down inference usually requires combinatorial algorithms,
such as belief propagation or MCMC, which are compu-

1Code and dataset are available at http://deepcontext.cs.princeton.edu.
Part of this work is done when Yinda Zhang was an intern at Microsoft
Research, Jianxiong Xiao was at Princeton University, Pushmeet Kohli and
Shahram Izadi were at Microsoft Research.
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Figure 1. Example of canonical scene templates (top view) and
the natural images they represent. We learn four scene tem-
plates from SUN-RGBD[32]. Each scene template encodes the
canonical layout of a functional area.

tationally expensive in a noisy solution space. Therefore,
the whole combined system can hardly achieve a reason-
ably optimal solution efficiently and robustly.

Inspired by the success of deep learning, we propose
a 3D deep convolutional neural network architecture that
jointly leverages local appearance and global scene context
efficiently for 3D scene understanding.

Designing a deep learning architecture to encode con-
text for scene understanding is challenging. Unlike an ob-
ject whose location and size can be represented with a fixed
number of parameters, a scene could involve unknown num-
ber of objects and thus requires variable dimensionality to
represent, which is hard to incorporate with convolutional
neural network with a fixed architecture. Also, although
holistic scene models allow flexible context, they require
common knowledge to manually predefine relationship be-
tween objects, e.g. the relative distance between bed and
nightstands. As a result, the model may unnecessarily en-
code weak context, ignore important context, or measure
context in an over simplified way.

To solve these issues, we propose and learn a scene rep-
resentation encoded in scene templates. A scene template
contains a super set of objects with strong contextual corre-
lation that could possibly appear in a scene with relatively
constrained furniture arrangements. It allows a prediction
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Figure 2. Our deep 3D scene understanding pipeline. Given a 3D volumetric input derived from a depth image, we first aligns the scene
template with the input data. Given the initial alignment, our 3D context network estimates the existence of an object and adjusts the object
location based on local object features and holistic scene feature, to produce the final 3D scene understanding result.

of “not present” for the involved objects so that a variety of
scenes can be represented with a fixed dimensionality. A
scene can be considered as a scene template with a subset
of objects activated. Scene template also learns to only con-
sider objects with strong context, and we argue that context-
less objects, such as a chair can be arbitrarily placed, should
be detected by a local appearance based object detector.

Each template represents a functional sub-region of an
indoor scene, predefined with canonical furniture arrange-
ments and estimated 3D anchor positions of possible ob-
jects with respect to the reference frame of the template.
We incorporate these template anchors as priors in the neu-
ral architecture by designing a transformation network that
aligns the input 3D scene (corresponding to the observed
depth image) with the template (i.e. the canonical furniture
arrangement in 3D space). The aligned 3D scene is then
fed into a 3D context neural network that determines the
existence and location of each object in the scene template.
This 3D context neural network contains a holistic scene
pathway and an object pathway using 3D Region Of Inter-
est (ROI) pooling in order to classify object existence and
regress object location respectively. Our model learns to
leverage both global and local information from two path-
ways, and can recognize multiple objects in a single forward
pass of a 3D neural network. It is noted that we do not man-
ually define the contextual relationships between objects,
but allow the network to automatically learn context in ar-
bitrary format across all objects.

Data is yet another challenging problem for training our
network. Holistic scene understanding requires the 3D Con-
vNet to have sufficient model capacity, which needs to be
trained with a massive amount of data. However, existing
RGB-D datasets for scene understanding are all small. To
overcome this limitation, we synthesize training data from
existing RGB-D datasets by replacing objects in a scene
with those from a repository of CAD models from the same
object category, and render them in place to generate par-
tially synthesized depth images. Our synthetic data exhibits
a variety of different local object appearances, while still
keeping the indoor furniture arrangements and clutter as
shown in the real scenes. In experiments, we use these syn-
thetic data to pretrain and then finetune our network on a
small amount of real data, whereas the same network di-

rectly trained on real data can not converge.
The contributions of this paper are mainly three aspects.

1) We propose a scene template representation that enables
the use of a deep learning approach for scene understanding
and learning context. The scene template only encodes ob-
jects with strong context, and provides a fixed dimension of
representation for a family of scenes. 2) We propose a 3D
context neural network that learns scene context automati-
cally. It leverages both global context and local appearance,
and detects all objects in context efficiently in a single for-
ward pass of the network. 3) We propose a hybrid data aug-
mentation method, which generates depth images keeping
indoor furniture arrangements from real scenes but contain-
ing synthetic objects with different appearance.

Related Work The role of context has been studied ex-
tensively in computer vision [1, 3, 4, 5, 8, 10, 11, 13, 18,
19, 20, 21, 25, 27, 29, 30, 36, 37, 38, 40, 41, 42, 43, 44].
While most existing research is limited to 2D, there are
some works on modeling context for total scene understand-
ing from RGB-D images [15, 23, 31, 39, 48]. In term of
methodology, most of such approaches take object detec-
tion as the input and incorporate context models during a
post-processing. We aim to integrate context more tightly
with deep neural network for object detection.

There are some efforts incorporating holistic context
model for scene understanding, which is closely related to
our work. Scene context is usually manually defined as a
unary term on a single object, pairwise term between a pair
of objects to satisfy certain functionality [23, 46], or a more
complicated hierarchy architecture [6, 24, 49]. The learned
context models are usually applied on a large set of object
hypotheses generated using local evidence, e.g. line seg-
ments [49] or cuboid [23], by energy minimization. There-
fore high order context might be ignored or infeasible to op-
timize. Context can be also represented in a non-parametric
way [48], which potentially enables high order context but
is more computationally expensive to infer during the test-
ing time. In contrast, our 3D context network does not re-
quire any heuristic intervene on the context and learns con-
text automatically. We also require no object hypothesis
generation, which is essential in making our method more
computationally efficient.

Deep learning has been applied to 3D data, but most of
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these works focus on modeling objects [45] and object de-
tection [26, 34]. Recently, some successes have been made
on applying deep learning for inverse graphics [16, 17]. Our
approach goes one step further to embrace the full com-
plexity of real-world scenes to perform holistic scene un-
derstanding. Related to our transformation network, Spatial
Transformation Networks [14] can learn the transformation
of an input data to a canonical alignment in an unsupervised
fashion. However, unlike MNIST digits (which were con-
sidered in [14]) or an individual object where an alignment
to a canonical viewpoint is quite natural, it is not clear what
transforms are needed to reach a canonical configuration for
a 3D scene. We define the desired alignment in template
coordinates and use supervised training by employing the
ground truth alignments available from our training data.

While many works have considered rendering synthetic
data for training (a.k.a, graphics for vision, or synthesis for
analysis), these efforts mostly focus on object rendering,
either in color [22, 35] or depth [33]. There is also work
rendering synthetic data from CAD model of complicated
scenes for scene understanding [12, 47]. However, the gen-
erated depth is overly clean, and the scene layouts generated
by either by algorithm or human artists are not guaranteed
to be correct. In contrast, we utilize both the CAD mod-
els and real depth maps to generate more natural data with
appropriate context and real-world clutter.

2. Algorithm Overview
Our approach works by first automatically constructing

a set of scene templates from the training data (see Sec-
tion 3.1). Rather than a holistic model for everything in
the scene, each scene template only represents objects with
context in a sub-area of a scene performing particular func-
tionality. Each template defines a distribution of possible
layouts of one or more instances of different object cate-
gories in a fixed dimensionality.

Given a depth map of a scene as input2, we convert it into
a 3D volumetric representation of the scene and feed it into
the neural network. The neural network first infers the scene
template that is suitable to represent the scene, or leaves it
to a local appearance based object detector if none of the
predefined scene templates is satisfied. If a scene template
is chosen, the transformation network estimates the rotation
and translation that aligns the scene to the inferred scene
template. With this initial alignment, the 3D context net-
work extracts both the global scene feature encoding scene
context and the local object features pooled for each anchor
object defined in the template, as shown in Fig.2. These
features are concatenated together to predict the existence
of each anchor object in the template and an offset to adjust
its bounding box for a better object fit. The final result is an

2Note that while all the figures in the paper contain color, our system
relies only on depth as input without using any color information.
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Figure 3. 3D context network. The network consists of two path-
ways. The scene pathway takes the whole scene as input and ex-
tracts spatial feature and global feature. The object pathway pools
local feature from the spatial feature. The network learns to use
both the local and global features to perform object detection, in-
cluding wall, ceiling, and floor.

understanding of the scene with a 3D location and category
for each object in the scene, as well as room layout elements
including wall, floor, and ceiling, which are represented as
objects in the network.

3. Learning Scene Template
Objects with context in a functional area are usually at

relatively fixed locations. For example, a sleeping area is
usually composed of a bed with one or two nightstands on
the side, with optional lamps on the top. Object detection is
likely to succeed by searching around these canonical loca-
tions. We learn the categories of object instances and their
canonical sizes and locations in the template, from the train-
ing data. Examples of each template can be seen in Fig. 1.

3.1. Data-driven Template Definition
We learn to create scene templates using the SUN-

RGBD dataset consisting of 10,335 RGB-D images with 3D
object bounding box annotations. These RGB-D images are
mostly captured from household environments with strong
context. As a first experiment of combining 3D deep learn-
ing with context, we choose four scene templates: sleeping
area, office area, lounging area, and table & chair set, be-
cause they represent commonly seen indoor environments
with relatively larger numbers of images provided in SUN-
RGBD. Our approach can be extended to other functional
areas given sufficient training data. For SUN-RGBD, 75%
of the images from household scene categories can be de-
scribed, fully or partially, using these four scene templates.

Our goal is to learn layouts of the scene, such that each
template summarizes the bounding box location and cate-
gory of all objects appearing in the training set. To enable
the learning of the template, we select the images that con-
tain a single functional area, and label them with the scene
type they belong to. Other images containing arbitrary ob-
jects or multiple scene templates are not used in learning
scene templates. The ground truth scene categories are used
not only for learning the aforementioned templates, but also
for learning the scene template classification, the transfor-
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mation networks, and the 3D context networks in the fol-
lowing sections.

To obtain the anchor positions (i.e. common locations)
for each object type in a template, we take all 3D scenes be-
longing to this scene template and align them with respect to
the center and orientation of a major object3. After that, we
run k-means clustering for each object type and use the top
k cluster centroids as the anchor positions and size, where
k is user-defined. We also include room layout elements,
including wall, floor, ceiling, which are all represented as
regular objects with predefined thickness. Each scene tem-
plate has tens of object anchors in total for various object
categories (Fig. 1).

3.2. Generating Template-Based Ground Truth
To train a 3D context network using scene templates, we

need to convert the original ground truth data from SUN
RGB-D dataset to a template representation. Specifically,
we need to associate each annotated object in the original
ground truth with one of the objects defined in the scene
template. Similar to above, we first align the training im-
ages with their corresponding scene templates using the
center and rotation of the major object. For the rest of the
objects, we run a bipartite matching between the dataset an-
notation and the template anchors, using the difference of
center location and size as the distance, while ensuring that
the objects of the same category are matched.

4. 3D Scene Parsing Network
Given a depth image as input, we first convert it into a 3D

volumetric representation, using the Truncated Signed Dis-
tance Function (TSDF) [34, 28]. We use a 128× 128× 64
grid for the TSDF to include a whole scene, with a voxel
unit size of 0.05 meters and a truncation value of 0.15 me-
ters. This TSDF representation is fed into the 3D neural
network such that the model runs naturally in 3D space and
directly produces output in 3D.

4.1. Scene Template Classification Network
We first train a neural network to estimate the scene tem-

plate category for the input scene (Fig. 3, Scene pathway).
The TSDF representation of the input scene is firstly fed
into 3 layers of 3D convolution + 3D pooling + ReLU, and
converted to a spatial feature map. After passing through
two fully connected layers, the 3D spatial feature is con-
verted to a global feature vector that encodes the informa-
tion from the whole scene. The global feature is used for
scene template classification with a classic softmax layer.
During testing, we choose the scene template with the high-
est score for the input scene if the confidence is high enough
(> 0.95). Otherwise, we do not run our method because

3We manually choose bed for sleeping area, desk for office area, sofa
for lounging area, and table for table&chair set as the major objects.
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Figure 4. Transformation estimation. Our transformation net-
work first produces global rotation and then translation to align the
input scene with its scene template in 3D space. Both the rotation
and translation are estimated as classification problems.

none of the scene templates fits the input scene. Such scenes
are passed to a local appearance based object detector for
object detection. In practice, the four scene templates can
match with more than half of the images in the SUN-RGBD
dataset captured from various of indoor environments.

4.2. Transformation Network
Given the scene template category, our method estimates

a global transformation consisting of a 3D rotation and
translation that aligns the point cloud of the input scene to
the target predefined scene-template (Fig. 4). This is essen-
tially a transformation that aligns the major object in the
input scene with that from the scene template. This makes
the result of this stage invariant to rotations in the input, and
the wall and bounding box of objects are globally aligned to
three main directions. The next part of our architecture, the
3D context network, relies on this alignment to obtain the
object orientation and the location to pool feature based on
3D object anchor locations from the scene template.

We first estimate the rotation. We assume that the grav-
ity direction is given, e.g. from an accelerometer. In our
case, this gravity direction is provided by the SUN RGB-D
dataset used in our experiments. Therefore, we only need
to estimate the yaw, which rotates the input point cloud in
horizontal plane to the scene template viewpoint shown in
Fig.1. We divide the 360-degree range of rotation into 36
bins and cast this problem into a classification task (Fig. 4).
We train a 3D ConvNet using the same architecture as the
scene template classification network introduced in Sec. 4.1
except generating a 36 channel output for softmax. During
training, we align each training input scene to the center of
the point cloud and add noise for rotations (+/- 10 degrees)
and translations (1/6 of the range of the point cloud).

For translation, we apply the same network architecture
to identify the translation after applying the predicted rota-
tion. The goal is to predict the 3D offset between the centers
of the major objects of the input point cloud and its corre-
sponding scene template. To achieve this goal, we discretize
the 3D translation space into a grid of 0.5m3 resolution with
dimensions of [−2.5, 2.5]× [−2.5, 2.5]× [−1.5, 1], and for-
mulate this task again as a 726-way classification problem
(Fig. 4). We tried direct regression with various loss func-
tions, but it did not work as well as classification. We also
tried an ICP-based approach, however it could not produce
good results.
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Figure 5. Hybrid data synthesis. We first search for similar CAD
model for each object. Then, we randomly choose models from
good matches, and replace the points in annotated bounding box
with the rendered CAD model.

4.3. 3D Context Network

We now describe the context neural network for indoor
scene parsing using scene templates. For each scene tem-
plate defined in the previous section, a separate prediction
network is trained. As shown in Fig. 3, the network has
two pathways. The global scene pathway, given a 3D volu-
metric input in a coordinate system that is aligned with the
template, produces both a spatial feature that preserves the
spatial structure in the input data and a global feature for
the whole scene. For the object pathway, we take the spatial
feature map from the scene pathway as input, and pool the
local 3D Region Of Interest (ROI) based on the 3D scene
template for the specific object. The 3D ROI pooling is a
max pooling at 6×6×6 resolution, inspired by the 2D ROI
pooling from [9]. The 3D pooled features are then passed
through 2 layers of 3D convolution + 3D pooling + ReLU,
and then concatenated with the global feature vector from
the scene pathway. After two more fully connected layers,
the network predicts the existence of the object (a binary
classification task) as well as the offset of the 3D object
bounding box (3D location and size) related to the anchor
locations learned in Sec. 3.1 (a regression task using L1-
smooth loss [34]). Including the global scene feature vector
in the object feature vector provides holistic context infor-
mation to help identify if the object exists and its location.

4.4. Training Schema

Our 3D scene parsing network contains a series of com-
ponents with a large number of parameters. We perform
careful training strategy to avoid bad local optima. We first
train the scene pathway alone to perform a 4-way scene
classification task. After this training converges, we fine-
tune the classification network to estimate the transforma-
tion for each individual scene template. An alternative ap-
proach is to jointly train a network for classification and
transformation, however this does not perform well in prac-
tice. The object pathway is then enabled, and the two path-
ways are jointly finetuned to perform object detection. We
found that this form of pretraining, from easy to hard task,
is crucial in our experiments. Otherwise, training the four
networks independently from scratch cannot produce mean-
ingful models.

5. Synthesizing Hybrid Data for Pre-training
In contrast to existing deep architectures for 3D [34, 45],

our model takes the whole scene with multiple objects as
input. As such, during training, it needs to model the dif-
ferent variations in the scene layout. We found the RGB-
D images from the existing SUN RGB-D [32] dataset are
far from sufficient. Furthermore, capturing and annotating
RGB-D images on the scale of ImageNet [7] was impracti-
cal. To overcome the data deficiency problem, we increase
the size of the training data by replacing the annotated ob-
jects from SUN RGB-D with CAD models of same cate-
gory from ShapeNetCore dataset [2] (Fig. 5). This allows us
to generate context-valid scenes, as the context still comes
from a real environment, while changing the shapes of the
objects. By replacing the annotated objects while keep-
ing the full complexity of the areas outside the annotated
bounding boxes, we could generate more realistic hybrid
data partially maintaining sensor noise. This is in contrast
to images generated from purely synthetic models which do
not contain clutter caused by the presence of small objects.

To search for similar CAD models for annotated objects
in RGB-D images, we need to define the distance between
a CAD model M, and the 3D point cloud P representing
the object. In order to get a symmetric definition, we first
put the model in the annotated 3D box, scale it to fit, ren-
derM with the camera parameter of the depth image, and
convert the rendered depth image to a point cloud V . This
is to mimic the partial view due to self occlusion. Then, we
define the distance between P and S as:

D(P,S) = 1

|P|
∑
p∈P

(
min
q∈V

d(p, q)
)
+

1

|V|
∑
p∈V

(
min
q∈P

d(p, q)
)
,

where d(p, q) is the distance between two 3D points p and
q. After acquiring a short list of similar CAD models for
each object, we randomly choose one and render the depth
image with the original annotation as training data.

We generate a hybrid training set that is 1,000 times big-
ger than the original RGB-D training set. For both of the
pathways in the 3D context network, we have to train the
models on this large hybrid dataset first, followed by fine-
tuning on the real depth maps. Otherwise, the training can-
not converge.

6. Experiments
We use the SUN RGB-D dataset [32] because they pro-

vide high quality 3D bounding box annotations of objects.
As described in Section 3.1, we manually select images that
can be perfectly represented by one of the scene templates,
and choose 1,863 RGB-D images from SUN RGB-D. We
use 1,502 depth images to learn scene templates and train
the 3D scene parsing network, and the remaining 361 im-
ages for testing. We also evaluate our model for object de-
tection on a testing set containing images that cannot be per-
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fectly represented, e.g. containing arbitrary objects or mul-
tiple scene templates, to demonstrate that our scene tem-
plates have a good generalization capability and a high im-
pact on real scenes in the wild.

Our model uses the half data type, which represents a
floating point number by 2 bytes, to reduce the memory
usage. We train the model with a mini-batch of 24 depth
images requiring 10GB, which nearly fills a typical 12GB
GPU. However, this mini-batch size was too small to obtain
reliable gradients for optimization. Therefore, we accumu-
late the gradients over four iterations of forward and back-
ward without weight update, and only update the weights
once afterwards. Using this approach, the effective mini-
batch size is 24× 4 or 96.

6.1. 3D object detection.
Our model recognizes major objects in a scene, which

can be evaluated by 3D object detection. Qualitative parsing
results are shown in Fig. 8. Our model finds most of the ob-
jects correctly and produces decent scene parsing results for
challenging cases, e.g. heavy occlusion and missing depth.
3D context enables long range regression when initial align-
ment is far from correct, as shown in the 5th row. The last
row shows a failure case, where our model recognizes it as a
sleeping area misled by the futon with blankets. Therefore,
our model overlooks the coffee table, but still predicts the
wall and floor correctly and find a proper place to sleep.

Table 1 shows quantitative comparison to the local ap-
pearance based 3D object detector Deep Sliding Shape
(DSS) [34] and also the cloud of gradient feature based con-
text model from Ren et al. (COG) [31]. Our average preci-
sion (3rd row) is comparable to state-of-the-art, but only
takes about 0.5 seconds to process an image for all object
categories, which is about 40 times faster than DSS which
takes 20 seconds per image.

Context complements local evidence. Fig. 6 shows
some qualitative comparisons between our context model
and the local object detector DSS [34]. We can see that our
context model works significantly better in detecting objects
with missing depth (the monitor in 1st and 3rd examples)
and heavy occlusion (the nightstand in 2nd example). 3D
context also helps to remove objects in incorrect arrange-
ments, such as the table on top of another table, and the
nightstand at the tail of the bed or in office, as shown in
the result of DSS. Comparatively, DSS works better for ob-
jects that are not constrained, e.g. chairs on the right of 3rd
example.

We integrate the result from DSS and our context model.
The combined result achieves significantly better perfor-
mance than each of the models individually, increasing the
mean average precision from the 43.76% for DSS stand-
alone to 50.50%. This significant improvement demon-
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table
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lamp lamp

nightstand

bed

ottoman
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Figure 6. Comparison between our context model and the lo-
cal object detector DSS [34]. Our context model works well for
objects with missing depth (monitors in 1st, 3rd row), heavy occlu-
sion (nightstand in 2nd row), and prevents detections with wrong
arrangement (wrong table and nightstand in DSS result).
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Figure 7. Precision recall curves for some object categories. We
compare our algorithm with the 3D object detector DSS [34] and
the cloud of gradient feature based context model Ren et al. [31].

strates that our context model provides complementary in-
formation with a local appearance based object detector.

Fig. 7 shows the Precision-Recall (PR) curves for some
of the object categories. We can clearly see that our (green)
recalls are not as high as DSS (blue) that runs in a slid-
ing window fashion to exhaustively cover the search space.
This is because our model only detects objects within the
context. However, our algorithm maintains a very high pre-
cision, which applies to a broader range of working situa-
tions, with slightly lower recall. Nevertheless, combining
the result of our method and DSS (red) obtains the best per-
formance in terms of both precision and recall.

Generalization to imperfect scene template images.
Our method can work not only on perfect scene template
images, but also images in the wild. Thanks to the tem-
plate classification and alignment component, our method
can find the right place in the input scene to apply the con-
text model. To evaluate, we randomly pick 2,000 images
that are not used for training from the SUN-RGBD dataset.
This uniformly sampled testing set reflects the scene distri-
bution from the dataset, and contains many images that can-
not be perfectly represented by any of the scene templates.
We test DSS on this test set and achieve 26.80% mAP (Ta-
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bed night- dresser coffee mirror end lamp monitor ottoman sofa chair tablestand table dresser table
COG [31] 79.8 48.1 1.70 - - - - - - 55.8 72.9 58.4
DSS [34] 90.3 52.3 7.60 52.7 4.40 13.3 40.2 15.0 23.7 71.3 79.1 75.2
Ours 89.4 63.3 19.7 40.5 16.8 27.9 41.6 18.2 13.3 50.3 44.5 65.9
Ours + DSS 91.8 66.7 23.4 50.1 10.0 35.3 53.6 23.2 31.5 62.8 80.2 77.4
GT Align 92.4 64.4 19.7 49.3 23.4 25.0 31.4 16.0 15.8 63.6 46.1 70.4
GT Align+Scene 94.1 66.3 19.4 48.9 23.4 21.7 31.4 16.1 15.8 74.6 50.2 74.0
DSS, Full 75.7 30.0 7.14 19.5 0.64 11.7 20.9 1.80 8.49 51.7 52.9 41.1
Ours, Full 75.8 44.1 15.7 25.8 4.99 12.4 22.4 3.47 10.7 49.0 53.2 30.5

Table 1. Average precision for 3D object detection. We (row 3) achieve comparable performance with DSS [34] (row 2). Combining two
methods (row 4) achieves significantly better performance, which shows our model learns context complementary to local appearance. Our
model can further achieve better performance with better alignment and scene classification. The last row shows our superior performance
on extended testing set where images might not be perfectly represented by any single scene template.

Layout Estimation Sleeping Office Lounging Table
(Mean/Median) Area Area Area &Chair
Ceiling Initial 0.57/0.56 - - 0.84/0.71
Ceiling Estimate 0.45/0.40 - - 0.72/0.44
Floor Initial 0.30/0.25 0.28/0.24 0.25/0.23 0.22/0.20
Floor Estimate 0.10/0.09 0.09/0.06 0.22/0.16 0.08/0.05
Wall Initial 0.40/0.30 0.70/0.60 - -
Wall Estimate 0.22/0.08 0.60/0.21 - -

Table 2. Error (in meter) for room layout estimation. Our net-
work reduces the layout error upon initialization from the transfor-
mation network. Note that for some scene categories, the ceiling
and wall may not be visible from the images and therefore there
are no annotations (marked with “-”).

ble 1, the 2nd last row), which is similar to the performance
reported in [34]. We further run our method on testing im-
ages with the template classification confidence higher than
0.95, which ends up choosing 1,260 images. We combine
our result with DSS, and the performance is shown in the
last row of Table 1. As can be seen, our model successfully
wins in 10 out of 12 categories, and improves the mAP to
29.00%. This improvement shows that our model can be
applied to a variety of indoor scenes. It is also extremely
effective in improving the scene understanding result in the
aligned sub-area.

6.2. Room Layout and Total Scene Understanding
Layout estimation. As part of our model, we can esti-
mate the existence and location of the ceiling, floor, and the
wall directly behind the camera view. Table 2 shows quan-
titative evaluation. We can see that the 3D context network
can successfully reduce the error and predict a more accu-
rate room layout. Note that for some scene categories, the
ceiling and wall are usually not visible from the images.
These cases are marked as “-”.

Scene understanding. We use the metrics proposed in
[32] to evaluate total 3D Scene Understanding accuracy.
These metrics favor algorithms producing correct detections
for all categories and accurate estimation of the free space.
We compare our model with Ren et al. (COG) [31]. For
geometry precision (Pg), geometry recall (Rg), and seman-

Method Sym. Sleeping Office Lounging Table
Area Area Area &Chair

ICP No 75.6% 69.2% 58.5% 38.1%
ICP Yes 96.3% 89.0% 92.5% 75.3%

Network No 92.7% 87.9% 71.7% 44.3%
Network Yes 100.0% 93.4% 94.3% 73.2%

(a) Rotation Estimation Accuracy↑

Method Rot. Sleeping Office Lounging Table
Area Area Area &Chair

ICP - 0.473 0.627 1.019 0.558
Network GT 0.278 0.246 0.336 0.346
Network Est 0.306 0.278 0.606 0.332

(b) Translation Error (in meters) ↓
Table 3. Evaluation of the transformation networks. Our trans-
formation network outperforms direct point cloud matching in the
accuracies of both rotation and translation.

tic recall (Rr), we achieve 71.02%, 54.43%, and 52.96%,
which all clearly outperform 66.93%, 50.59%, and 47.99%
from COG. Note that our algorithm uses only the depth map
as input, while COG uses both color and depth.

6.3. System Component Analysis
Our 3D context network relies on the initial alignment

produced by scene template classification and transforma-
tion estimation model. We also investigate how these fac-
tors affect our performance.

Transformation Prediction. Table 3 reports the evalua-
tion of template alignment. For rotation, we show the per-
centage of data within a 10 degree range to the ground truth.
For translation, we show the distance between the estimated
translation and the ground truth.

For rotation, since some scenes (especially for lounging
area and table&chair set) are symmetric with respect to the
horizontal plane, a correct estimation of the main direction
would be enough for our purposes. Therefore, we report the
accuracies both with and without symmetry [Sym.].

To compare with our neural network-based approach, we
design an ICP approach based on point cloud alignment as a
baseline. Given a point cloud from a testing depth map, we
align it with the point cloud of each image in the training set,
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Figure 8. Visualization of the qualitative results on the testset.

by exhaustively searching for the best rotation and transla-
tion, using the measurement in Section 5. We choose the
alignment with the best aligned training depth map as our
transformation. We can see that our neural network based
approach significantly outperforms this baseline.

To see how sensitive our model is to the initial alignment,
we evaluate our model with the ground truth alignment, and
the result is shown in Table 1 [GT Align]. We can see that
the 9 out of 12 categories are improved in terms of AP, com-
pared to that with estimated transformation, and the overall
mAP improves 2.19%.

Template Classification. The accuracy of the scene tem-
plate classification is 89.5%. In addition to the ground truth

transformation, we test our model with truth template cate-
gory. This further improves the mAP by 1.52%.

7. Conclusion
We propose a 3D ConvNet architecture that directly en-

codes context and local evidence leveraging scene template.
The template is learned from training data to represent the
functional area with relatively strong context evidence. We
show that context model provides complementary informa-
tion with a local object detector, which can be easily in-
tegrate. Our system has a fairly high coverage on real
datasets, and achieves the state of the art performance for
3D object detection on the SUN-RGBD dataset.
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